statistical arbitrage

back to index

description: Class of short-term trading strategies involving diverse portfolios and data mining

55 results

pages: 257 words: 13,443

Statistical Arbitrage: Algorithmic Trading Insights and Techniques
by Andrew Pole
Published 14 Sep 2007

The language of mathematical models compounds the unfamiliarity of the notions, generating a sense of disquiet, a fear of lack of understanding. In Statistical Arbitrage, Pole has given his audience a didactic tour of the basic principles of statistical arbitrage, eliminating opacity at the Statistical Arbitrage 101 level. In the 1980s and early 1990s, Stat. Arb. 101 was, for the most part, all there was (exceptions such as D.E. Shaw and Renaissance aside). Today, more than a decade later, there is a much more extensive and complex world of statistical arbitrage. Foreword xxi This is not unlike the natural world, which is now populated by incredibly complex biological organisms after four billion years of evolution.

So is it true in statistical arbitrage, where the basics underpin much of contemporary practice. Statistical Arbitrage describes the phenomena, the driving forces generating those phenomena, the patterns of dynamic development of exploitable opportunities, and models for exploitation of the basic reversion to the mean in securities prices. It also offers a good deal more, from hints at more sophisticated models to valuable practical advice on model building and performance monitoring—advice applicable far beyond statistical arbitrage. Chapters 1 and 2 speak to the genesis of statistical arbitrage, the venerable pairs trading schemes of the 1980s, with startling illustration of the enormous extent and productivity of the opportunities.

High-frequency reversion strategies make lots of bets on small relative movements. Long-only fund redemptions cause price movements of a cumulatively much larger magnitude; the mechanics described in this section create the conditions for a blood bath for statistical arbitrage. 150 8.4.1 STATISTICAL ARBITRAGE Supercharged Destruction A large equity statistical arbitrage portfolio is perfectly designed to create, on liquidation, guaranteed losing conditions for other statistical arbitrage portfolios. Size matters because the sell-off of longs and the buy-in of shorts has to persist over the natural cycle of other players. If it does not, then initial losses will be reversed before existing trades are unwound; damage is limited largely to (possibly stomach churning) P&L volatility.

pages: 354 words: 26,550

High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems
by Irene Aldridge
Published 1 Dec 2009

Gatev, Goetzmann, and Rouwenhorst (2006) document that the out-of-sample back tests conducted on the daily equity data from 1967 to 1997 using their stat-arb strategy delivered Sharpe ratios well in excess of 4. High-frequency stat-arb delivers even higher performance numbers. PRACTICAL APPLICATIONS OF STATISTICAL ARBITRAGE General Considerations Most common statistical arbitrage strategies relying solely on statistical relationships with no economic background produce fair results, but these Statistical Arbitrage in High-Frequency Settings 189 relationships often prove to be random or spurious. A classic example of a spurious relationship is the relationship between time as a continuous variable and the return of a particular stock; all publicly listed firms are expected to grow with time, and while the relationship produces a highly significant statistical dependency, it can hardly be used to make meaningful predictions about future values of equities.

Options In options and other derivative instruments with a nonlinear payoff structure, statistical arbitrage usually works between a pair of instruments written on the same underlying asset but having one different characteristic. The different characteristic is most often either the expiration date or the strike price of the derivative. The strategy development proceeds along the steps noted in the previous sections. CONCLUSION Statistical arbitrage is powerful in high-frequency settings as it provides a simple set of clearly defined conditions that are easy to implement in a systematic fashion in high-frequency settings. Statistical arbitrage based on solid economic theories is likely to have longer staying power than strategies based purely on statistical phenomena.

HG4529.A43 2010 332.64–dc22 2009029276 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 To my family Contents Acknowledgments xi CHAPTER 1 Introduction 1 CHAPTER 2 Evolution of High-Frequency Trading 7 Financial Markets and Technological Innovation Evolution of Trading Methodology CHAPTER 3 Overview of the Business of High-Frequency Trading 7 13 21 Comparison with Traditional Approaches to Trading 22 Market Participants 24 Operating Model 26 Economics 32 Capitalizing a High-Frequency Trading Business 34 Conclusion 35 CHAPTER 4 Financial Markets Suitable for High-Frequency Trading 37 Financial Markets and Their Suitability for High-Frequency Trading Conclusion 38 47 v vi CHAPTER 5 CONTENTS Evaluating Performance of High-Frequency Strategies 49 Basic Return Characteristics 49 Comparative Ratios 51 Performance Attribution 57 Other Considerations in Strategy Evaluation 58 Conclusion 60 CHAPTER 6 Orders, Traders, and Their Applicability to High-Frequency Trading 61 Order Types 61 Order Distributions 70 Conclusion 73 CHAPTER 7 Market Inefficiency and Profit Opportunities at Different Frequencies 75 Predictability of Price Moves at High Frequencies 78 Conclusion 89 CHAPTER 8 Searching for High-Frequency Trading Opportunities 91 Statistical Properties of Returns 91 Linear Econometric Models 97 Volatility Modeling 102 Nonlinear Models 108 Conclusion 114 CHAPTER 9 Working with Tick Data 115 Properties of Tick Data 116 Quantity and Quality of Tick Data 117 Bid-Ask Spreads 118 Contents vii Bid-Ask Bounce 120 Modeling Arrivals of Tick Data 121 Applying Traditional Econometric Techniques to Tick Data 123 Conclusion 125 CHAPTER 10 Trading on Market Microstructure: Inventory Models 127 Overview of Inventory Trading Strategies 129 Orders, Traders, and Liquidity 130 Profitable Market Making 134 Directional Liquidity Provision 139 Conclusion 143 CHAPTER 11 Trading on Market Microstructure: Information Models 145 Measures of Asymmetric Information 146 Information-Based Trading Models 149 Conclusion 164 CHAPTER 12 Event Arbitrage 165 Developing Event Arbitrage Trading Strategies 165 What Constitutes an Event? 167 Forecasting Methodologies 168 Tradable News 173 Application of Event Arbitrage 175 Conclusion 184 CHAPTER 13 Statistical Arbitrage in High-Frequency Settings 185 Mathematical Foundations 186 Practical Applications of Statistical Arbitrage 188 Conclusion 199 viii CONTENTS CHAPTER 14 Creating and Managing Portfolios of High-Frequency Strategies 201 Analytical Foundations of Portfolio Optimization 202 Effective Portfolio Management Practices 211 Conclusion 217 CHAPTER 15 Back-Testing Trading Models 219 Evaluating Point Forecasts 220 Evaluating Directional Forecasts 222 Conclusion 231 CHAPTER 16 Implementing High-Frequency Trading Systems 233 Model Development Life Cycle 234 System Implementation 236 Testing Trading Systems 246 Conclusion 249 CHAPTER 17 Risk Management 251 Determining Risk Management Goals 252 Measuring Risk 253 Managing Risk 266 Conclusion 271 CHAPTER 18 Executing and Monitoring High-Frequency Trading 273 Executing High-Frequency Trading Systems 274 Monitoring High-Frequency Execution 280 Conclusion 281 Contents ix CHAPTER 19 Post-Trade Profitability Analysis 283 Post-Trade Cost Analysis 284 Post-Trade Performance Analysis 295 Conclusion 301 References 303 About the Web Site 323 About the Author 325 Index 327 Acknowledgments This book was made possible by a terrific team at John Wiley & Sons: Deb Englander, Laura Walsh, Bill Falloon, Tiffany Charbonier, Cristin RiffleLash, and Michael Lisk.

pages: 505 words: 142,118

A Man for All Markets
by Edward O. Thorp
Published 15 Nov 2016

People at Morgan Stanley began leaving the quantitative systems group that was in charge of statistical arbitrage. Among those to depart was David E. Shaw, a former professor of computer science at Columbia University. He had been wooed to Wall Street to use computers to find opportunities in the market. In the spring of 1988, Shaw spent the day in Newport Beach. We discussed his plan to launch an improved statistical arbitrage product. PNP was able to put up the $10 million he wanted for start-up, and we were impressed by his ideas but decided not to go ahead because we already had a good statistical arbitrage product. He found other backing, creating one of the most successful analytic firms on Wall Street, and later would become a member of the president’s science advisory committee.

Four years passed, and then, my friend and former partner Jerry Baesel came to me with tales of extraordinary returns from statistical arbitrage. Besides D. E. Shaw & Company, the practitioners included former Morgan Stanley quants who were starting their own hedge funds, and some of my past PNP associates. I asked the former Morgan Stanley people if they knew how statistical arbitrage started at their firm. No one did. A couple had heard rumors of a nameless legendary “discoverer” of the system, who of course, was Gerry Bamberger—so thoroughly had recognition for his contribution been erased. If our statistical arbitrage system still worked, Jerry Baesel told me that one of our former investors, a multibillion-dollar pension and profit sharing plan that was his current employer, wanted most or all of the capacity.

Would these disruptions increase our potential rate of return or would they thwart our statistical arbitrage system? Hedge funds were suffering in multiple ways. Owners of Asian securities lost heavily. Financial institutions suddenly were less willing to extend credit, and leveraged hedge funds were forced to liquidate positions. We heard that large statistical arbitrage positions were being closed out. This seems likely because they are liquid and can be sold quickly to raise cash. This deleveraging and liquidity crisis foreshadowed a similar and far greater global rerun in 2008. If there was such a large movement out of statistical arbitrage positions, we would expect our portfolios to lose while that was happening, because if others sell the stocks we own this drives the price down and our long positions show a loss.

Quantitative Trading: How to Build Your Own Algorithmic Trading Business
by Ernie Chan
Published 17 Nov 2008

(In fact, one can become quite poor trading complex mortgage-backed securities, as the financial crisis of 2007–08 and the demise of Bear Stearns have shown.) The kind of quantitative trading I focus on is called statistical arbitrage trading. Statistical arbitrage deals with the simplest financial instruments: stocks, futures, and sometimes currencies. One does not need an advanced degree to become a statistical arbitrage trader. If you have taken a few high school–level courses in math, statistics, computer programming, or economics, you are probably as qualified as anyone to tackle some of the basic statistical arbitrage strategies. P1: JYS c01 JWBK321-Chan September 24, 2008 13:44 Printer: Yet to come The Whats, Whos, and Whys of Quantitative Trading 3 Okay, you say, you don’t need an advanced degree, but surely it gives you an edge in statistical arbitrage trading?

(See discussions in Chapter 6 on this issue.) Since the actual returns distributions have fat tails, one should be quite wary of using too much leverage on normally low-beta stocks. SUMMARY This book has been largely about a particular type of quantitative trading called statistical arbitrage in the investment industry. Despite this fancy name, statistical arbitrage is actually far simpler than trading derivatives (e.g., options) or fixed-income instruments, both conceptually and mathematically. I have described a large part of the statistical arbitrageur’s standard arsenal: mean reversion and momentum, regime switching, stationarity and cointegration, arbitrage pricing theory or factor model, seasonal trading models, and, finally, high-frequency trading.

Finally, it teaches you some basics of risk management, which is critical if you want to survive over the long term, and also some psychological pitfalls to avoid if you want an enjoyable (and not just profitable) life as a trader. Even though the basic techniques for finding a good strategy should work for any tradable securities, I have focused my examples on an area of trading I personally know best: statistical arbitrage trading in stocks. While I discuss sources of historical data on stocks, futures, and foreign currencies in the chapter on backtesting, I did not include options because those are not in my area of expertise. The book is organized roughly in the order of the steps that traders need to undertake to set up their quantitative trading business.

pages: 321

Finding Alphas: A Quantitative Approach to Building Trading Strategies
by Igor Tulchinsky
Published 30 Sep 2019

More specifically, can quants predict the price of a given stock on a given date in the future? Unfortunately, we probably cannot make single predictions with any reasonable confidence. It is the nature of statistical arbitrage that prediction is possible only in a “statistical” sense: only over a large number of predictions do random errors average out to a usable level of accuracy in the aggregate. More interestingly, there are many ways of making such statistical price predictions. STATISTICAL ARBITRAGE The key underlying assumption of statistical arbitrage is that the prices of financial instruments are driven by consistent rules, which can be discovered from their historical behavior and applied to the future.

The period also demonstrated the flexibility and resilience of the quantitative investment approach, and showed that the quantitative operators developing alpha forecasts were able to adapt to new market environments, innovate, and ultimately stay relevant. In the next section, we will take a closer look at the alphas driving the quantitative strategies described above. 10 Finding Alphas STATISTICAL ARBITRAGE The term “statistical arbitrage” (stat arb) is sometimes used to describe a trading strategy based on the monetization of systematic price forecasts, or alphas. Unlike pure arbitrage, when a risk-free profit can be locked in by simultaneously purchasing and selling a basket of assets, a stat arb strategy aims to exploit relationships among asset prices that are estimated using historical data.

Shaw & Co. 8 design 25–30 automated searches 111–120 backtesting 33–41 case study 31–41 core concepts 3–6 data inputs 4, 25–26, 43–47 evaluation 28–29 expressions 4 flow chart 41 future performance 29–30 horizons 4–50 intraday alphas 219–221 machine learning 121–126 noise reduction 26 optimization 29–30 prediction frequency 27 quality 5 risk-on/risk off alphas 246–247 robustness 89–93 smoothing 54–55, 59–60 triple-axis plan 83–88 universe 26 value 27–30 digital filters 127–128 digitization 7–9 dimensionality 129–132 disclosures 192 distressed assets 202–203 diversification automated searches 118–119 exchange-traded funds 233 portfolios 83–88, 108 DL see deep learning dot (inner) product 63–64 Dow, Charles 7 DPIN see dynamic measure of the probability of informed trading drawdowns 106–107 dual timestamping 78 dynamic measure of the probability of informed trading (DPIN) 214–215 dynamic parameterization 132 early-exercise premium 174 earnings calls 181, 187–188 earnings estimates 184–185 earnings surprises 185–186 efficiency, automated searches 111–113 Index295 efficient markets hypothesis (EMH) 11, 135 ego 19 elegance of models 75 EMH see efficient markets hypothesis emotions 19 ensemble methods 124–125 ensemble performance 117–118 estimation of risk 102–106 historical 103–106 position-based 102–103 shrinkage 131 ETFs see exchange-traded funds Euclidean space 64–66 evaluation 13–14, 28–29 backtesting 13–14, 33–41, 69–76 bias 77–82 bootstrapping 107 correlation 28–29 cutting losses 20–21 data selection 74–75 drawdowns 107 information ratio 28 margin 28 overfitting 72–75 risk 101–110 robustness 89–93 turnover 49–60 see also validation event-driven strategies 195–205 business cycle 196 capital structure arbitrage 204–205 distressed assets 202–203 index-rebalancing arbitrage 203–204 mergers 196–199 spin-offs, split-offs & carve-outs 200–202 exchange-traded funds (ETFs) 223–240 average daily trading volume 239 challenges 239–240 merits 232–233 momentum alphas 235–237 opportunities 235–238 research 231–240 risks 233–235 seasonality 237–238 see also index alphas exit costs 19, 21 expectedness of news 164 exponential moving averages 54 expressions, simple 4 extreme alpha values 104 extrinsic risk 101, 106, 108–109 factor risk heterogeneity 234 factors financial statements 147 to alphas 148 failure modes 84 fair disclosures 192 fair value of futures 223 Fama–French three-factor model 96 familiarity bias 81 feature extraction 130–131 filters 127–128 finance blogs 181–182 finance portals 180–181, 192 financial statement analysis 141–154 balance sheets 143 basics 142 cash flow statements 144– 145, 150–152 corporate governance 146 factors 147–148 fundamental analysis 149–154 growth 145–146 income statements 144 negative factors 146–147 special considerations 147 finite impulse response (FIR) filters 127–128 296Index FIR filters see finite impulse response filters Fisher Transform 91 five-day reversion alpha 55–59 Float Boost 125 forecasting behavioral economics 11–12 computer adoption 7–9 frequencies 27 horizons 49–50 statistical arbitrage 10–11 UnRule 17–21 see also predictions formation of the industry 8–9 formulation bias 80 forward-looking bias 72 forwards 241–249 checklist 243–244 Commitments of Traders report 244–245 instrument groupings 242–243 seasonality 245–246 underlying assets 241–242 frequencies 27 full text analysis 164 fundamental analysis 149–154 future performance 29–30 futures 241–249 checklist 243–244 Commitments of Traders report 244–245 fair value 223 instrument groupings 242–243 seasonality 245–246 underlying assets 241–242 fuzzy logic 126 General Electric 200 generalized correlation 64–66 groupings, futures and forwards 242–243 group momentum 157–158 growth analysis 145–146 habits, successful 265–271 hard neutralization 108 headlines 164 hedge fund betas see risk factors hedge funds, initial 8–9 hedging 108–109 herding 81–82, 190–191 high-pass filters 128 historical risk measures 103–106 horizons 49–50 horizontal mergers 197 Huber loss function 129 humps 54 hypotheses 4 ideas 85–86 identity matrices 65 IIR filters see infinite impulse response filters illiquidity premium 208–211 implementation core concepts 12–13 triple-axis plan 86–88 inaccuracy of models 10–11 income statements 144 index alphas 223–240 index changes 225–228 new entrants 227–228 principles 223–225 value distortion 228–230 see also exchange-traded funds index-rebalancing arbitrage 203–204 industry formation 8–9 industry-specific factors 188–190 infinite impulse response (IIR) filters 127–128 information ratio (IR) 28, 35–36, 74–75 initial hedge funds 8–9 inner product see dot product inputs, for design 25–26 integer effect 138 intermediate variables 115 Index297 intraday data 207–216 expected returns 211–215 illiquidity premium 208–211 market microstructures 208 probability of informed trading 213–215 intraday trading 217–222 alpha design 219–221 liquidity 218–219 vs. daily trading 218–219 intrinsic risk 102–103, 105–106, 109 invariance 89 inverse exchange-traded funds 234 IR see information ratio iterative searches 115 Jensen’s alpha 3 L1 norm 128–129 L2 norm 128–129 latency 46–47, 128, 155–156 lead-lag effects 158 length of testing 75 Level 1/2 tick data 46 leverage 14–15 leveraged exchange-traded funds 234 limiting methods 92–93 liquidity effect 96 intraday data 208–211 intraday trading 218–219 and spreads 51 literature, as a data source 44 look-ahead bias 78–79 lookback days, WebSim 257–258 looking back see backtesting Lo’s hypothesis 97 losses cutting 17–21, 109 drawdowns 106–107 loss functions 128–129 low-pass filters 128 M&A see mergers and acquisitions MAC clause see material adverse change clause MACD see moving average convergence-divergence machine learning 121–126 deep learning 125–126 ensemble methods 124–125 fuzzy logic 126 look-ahead bias 79 neural networks 124 statistical models 123 supervised/unsupervised 122 support vector machines (SVM) 122, 123–124 macroeconomic correlations 153 manual searches, pre-automation 119 margin 28 market commentary sites 181–182 market effects index changes 225–228 see also price changes market microstructure 207–216 expected returns 211–215 illiquidity premium 208–211 probability of informed trading 213–215 types of 208 material adverse change (MAC) clause 198–199 max drawdown 35 max stock weight, WebSim 257 mean-reversion rule 70 mean-squared error minimization 11 media 159–167 academic research 160 categorization 163 expectedness 164 finance information 181–182, 192 momentum 165 novelty 161–162 298Index sentiment 160–161 social 165–166 mergers and acquisitions (M&A) 196–199 models backtesting 69–76 elegance 75 inaccuracy of 10–11 see also algorithms; design; evaluation; machine learning; optimization momentum alphas 155–158, 165, 235–237 momentum effect 96 momentum-reversion 136–137 morning sunshine 46 moving average convergencedivergence (MACD) 136 multiple hypothesistesting 13, 20–21 narrow framing 81 natural gas reserves 246 negative factors, financial statements 146–147 neocognitron models 126 neural networks (NNs) 124 neutralization 108 WebSim 257 newly indexed companies 227–228 news 159–167 academic research 160 categories 163 expectedness 164 finance information 181–182, 192 momentum 165 novelty 161–162 relevance 162 sentiment 160–161 volatility 164–165 NNs see neural networks noise automated searches 113 differentiation 72–75 reduction 26 nonlinear transformations 64–66 normal distribution, approximation to 91 novelty of news 161–162 open interest 177–178 opportunities 14–15 optimization 29–30 automated searches 112, 115–116 loss functions 128–129 of parameter 131–132 options 169–178 concepts 169 open interest 177–178 popularity 170 trading volume 174–177 volatility skew 171–173 volatility spread 174 option to stock volume ratio (O/S) 174–177 order-driven markets 208 ordering methods 90–92 O/S see option to stock volume ratio outliers 13, 54, 92–93 out-of-sample testing 13, 74 overfitting 72–75 data mining 79–80 reduction 74–75, 269–270 overnight-0 alphas 219–221 overnight-1 alphas 219 parameter minimization 75 parameter optimization 131–132 PCA see principal component analysis Pearson correlation coefficients 62–64, 90 peer pressure 156 percent profitable days 35 performance parameters 85–86 Index299 PH see probability of heuristicdriven trading PIN see probability of informed trading PnL see profit and loss pools see portfolios Popper, Karl 17 popularity of options 170 portfolios correlation 61–62, 66 diversification 83–88, 108 position-based risk measures 102–103 positive bias 190 predictions 4 frequency 27 horizons 49–50 see also forecasting price changes analyst reports 190 behavioral economics 11–12 efficient markets hypothesis 11 expressions 4 index changes 225–228 news effects 159–167 relative 12–13, 26 price targets 184 price-volume strategies 135–139 pride 19 principal component analysis (PCA) 130–131 probability of heuristic-driven trading (PH) 214 probability of informed trading (PIN) 213–215 profit and loss (PnL) correlation 61–62 drawdowns 106–107 see also losses profit per dollar traded 35 programming languages 12 psychological factors see behavioral economics put-call parity relation 174 Python 12 quality 5 quantiles approximation 91 quintile distributions 104–105 quote-driven markets 208 random forest algorithm 124–125 random walks 11 ranking 90 RBM see restricted Boltzmann machine real estate investment trusts (REITs) 227 recommendations by analysts 182–183 recurrent neural networks (RNNs) 125 reduction of dimensionality 130–131 of noise 26 of overfitting 74–75, 269–270 of risk 108–109 Reg FD see Regulation Fair Disclosure region, WebSim 256 regions 85–86 regression models 10–11 regression problems 121 regularization 129 Regulation Fair Disclosure (Reg FD) 192 REITs see real estate investment trusts relationship models 26 relative prices 12–13, 26 relevance, of news 162 Renaissance Technologies 8 research 7–15 analyst reports 179–193 automated searches 111–120 backtesting 13–14 300Index behavioral economics 11–12 computer adoption 7–9 evaluation 13–14 exchange-traded funds 231–240 implementation 12–13 intraday data 207–216 machine learning 121–126 opportunities 14–15 perspectives 7–15 statistical arbitrage 10–11 triple-axis plan 83–88 restricted Boltzmann machine (RBM) 125 Reuleaux triangle 70 reversion alphas, five-day 55–59 risk 101–110 arbitrage 196–199 control 108–109 drawdowns 106–107 estimation 102–106 extrinsic 101, 106, 108–109 intrinsic 102–103, 105–106, 109 risk factors 26, 95–100 risk-on/risk off alphas 246–247 risk-reward matrix 267–268 RNNs see recurrent neural networks robustness 89–93, 103–106 rules 17–18 evaluation 20–21 see also algorithms; UnRule Russell 2000 IWM fund 225–226 SAD see seasonal affective disorder scale of automated searches 111–113 search engines, analyst reports 180–181 search spaces, automated searches 114–116 seasonality exchange-traded funds 237–238 futures and forwards 245–246 momentum strategies 157 and sunshine 46 selection bias 77–79, 117–118 sell-side analysts 179–180 see also analyst reports sensitivity tests 119 sentiment analysis 160–161, 188 shareholder’s equity 151 Sharpe ratios 71, 73, 74–75, 221, 260 annualized 97 Shaw, David 8 shrinkage estimators 131 signals analysts report 190, 191–192 cutting losses 20–21 data sources 25–26 definition 73 earnings calls 187–188 expressions 4 noise reduction 26, 72–75 options trading volume 174–177 smoothing 54–55, 59–60 volatility skew 171–173 volatility spread 174 sign correlation 65 significance tests 119 Simons, James 8 simple moving averages 55 simulation backtesting 71–72 WebSim settings 256–258 see also backtesting size factor 96 smoothing 54–55, 59–60 social media 165–166 sources of data 25–26, 43–44, 74–75 automated searches 113–114 see also data sparse principal component analysis (sPCA) 131 Spearman’s rank correlation 90 Index301 special considerations, financial statements 147 spin-offs 200–202 split-offs 200–202 spreads and liquidity 51 and volatility 51–52 stat arb see statistical arbitrage statistical arbitrage (stat arb) 10–11, 69–70 statistical models, machine learning 123 step-by-step construction 5, 41 storage costs 247–248 storytelling 80 subjectivity 17 sunshine 46 supervised machine learning 122 support vector machines (SVM) 122, 123–124 systemic bias 77–80 TAP see triple-axis plan tax efficiency, exchange-traded funds 233 teams 270–271 temporal-based correlation 63–64, 65 theory-fitting 80 thought processes of analysts 186–187 tick data 46 timestamping and bias 78–79 tracking errors 233–234 trades cost of 50–52 crossing effect 52–53 latency 46–47 trend following 18 trimming 92 triple-axis plan (TAP) 83–88 concepts 83–86 implementation 86–88 tuning of turnover 59–60 see also smoothing turnover 49–60 backtesting 35 control 53–55, 59–60 costs 50–52 crossing 52–53 examples 55–59 horizons 49–50 smoothing 54–55, 59–60 WebSim 260 uncertainty 17–18 underlying principles 72–73 changes in 109 understanding data 46 unexpected news 164 universes 26, 85–86, 239–240, 256 UnRule 17–18, 20–21 unsupervised machine learning 122 validation, data 45–46 valuation methodologies 189 value of alphas 27–30 value distortion, indices 228–230 value factors 96 value investing 96, 141 variance and bias 129–130 vendors as a data source 44 vertical mergers 197 volatility and news 164–165 and spreads 51–52 volatility skew 171–173 volatility spread 174 volume of options trading 174–177 price-volume strategies 135–139 volume-synchronized probability of informed trading (VPIN) 215 302Index VPIN see volume-synchronized probability of informed trading weather effects 46 WebSim 253–261 analysis 258–260 backtesting 33–41 data types 255 example 260–261 settings 256–258 weekly goals 266–267 weighted moving averages 55 Winsorization 92–93 Yahoo finance 180 Z-scoring 92

pages: 272 words: 19,172

Hedge Fund Market Wizards
by Jack D. Schwager
Published 24 Apr 2012

But Princeton Newport was doing so well on a risk-adjusted basis with the strategies it had already that we put the statistical arbitrage strategy aside. It wasn’t clear that the marginal improvement that could have been obtained by adding statistical arbitrage to the existing strategies warranted diverting the resources that would have been needed for its implementation. When did you turn back to it again? In 1985, we placed an ad in the Wall Street Journal looking for people who had reliable ideas that would produce provable excess returns. One of the calls we received in response to that ad was from Gerry Bamberger, who turned out to be the person who had discovered statistical arbitrage at Morgan Stanley.

What was your involvement with David Shaw, who was another relatively early practitioner of statistical arbitrage? In 1988, David Shaw had left Solomon and was looking for someone to fund him in a statistical arbitrage startup. I didn’t know exactly what he wanted when he came out here, but we talked for about six hours, and it seemed that his strategy was redundant with ours. So we parted on friendly terms. So it was basically a matter of you both realizing that you were working on the same thing, and there really wasn’t a match. That is exactly right. What did you do after you shut down the statistical arbitrage fund in 2002? I managed my investments in other people’s hedge funds.

He eventually was forced to abandon this strategy when the dealers dramatically widened their bid/ask spreads, wiping out about half the potential profit on each trade. Thorp had successfully traded a statistical arbitrage strategy since the mid-1980s. In 1992, he was asked to run the strategy for a large institutional client. Two years later, he started his second hedge fund, Ridgeline Partners, to open the statistical arbitrage strategy to other investors. Ridgeline traded very actively, averaging about 6 million shares per day and accounting for about ½ percent of total NYSE volume. Thorp ran the strategy over 10 years.

Learn Algorithmic Trading
by Sebastien Donadio
Published 7 Nov 2019

Understanding and implementing basic statistical arbitrage trading strategies Statistical arbitrage trading strategies (StatArb) first became popular in the 1980s, delivering many firms double-digit returns. It is a class of strategies that tries to capture relationships between short-term price movements in many correlated products. Then it uses relationships that have been found to be statistically significant in the past research to make predictions in the instrument being traded based on price movements in a large group of correlated products. Basics of StatArb Statistical arbitrage or StatArb is in some way similar to pairs trading that takes offsetting positions in co-linearly related products that we explored in Chapter 4, Classical Trading Strategies Driven by Human Intuition.

With sophisticated trading strategies, such as volatility adjusted trading strategies, economic-release-based trading strategies, pair-trading strategies, and statistical arbitrage strategies, there are more underlying assumptions about the relationship between volatility measures and trading instruments, the relationship between economic releases and impact on economy, and price moves in trading instruments. Pair-trading and statistical arbitrage trading strategies also make assumptions about the relationship between different trading instruments and how it evolves over time. As we discussed when we covered statistical arbitrage trading strategies, when these relationships break down, the strategies no longer continue to be profitable.

We got to learned how they work, along with their advantages and disadvantages In the next chapter, we will build on top of the basic algorithmic strategies and learn about more advanced approaches (statistical arbitrage, pair correlation), along with their advantages and disadvantages. Sophisticated Algorithmic Strategies In this chapter, we will explore more sophisticated trading strategies employed by leading market participants in the algorithmic trading business. We will build on top of the basic algorithmic strategies and learn about more advanced approaches (such as statistical arbitrage and pair correlation) and their advantages and disadvantages. We will learn how to create a trading strategy that adjusts for trading instrument volatility.

pages: 297 words: 91,141

Market Sense and Nonsense
by Jack D. Schwager
Published 5 Oct 2012

If, as occurred in 2008, they need to liquidate at the same time because of a flight-to-safety psychology in the market, the huge imbalance between supply and demand can result in managers being forced to liquidate positions at deeply discounted prices. Statistical arbitrage. The premise underlying statistical arbitrage is that short-term imbalances in buy and sell orders cause temporary price distortions, which provide short-term trading opportunities. Statistical arbitrage is a mean-reversion strategy that seeks to sell excessive strength and buy excessive weakness based on statistical models that define when short-term price moves in individual equities are considered out of line relative to price moves in related equities. The origin of the strategy was a subset of statistical arbitrage called pairs trading. In pairs trading, the price ratios of closely related stocks are tracked (e.g., Ford and General Motors), and when the mathematical model indicates that one stock has gained too much versus the other (either by rising more or by declining less), it is sold and hedged by the purchase of the related equity in the pair.

A classic example of this phenomenon was the meltdown of statistical arbitrage funds in August 2007. Statistical arbitrage is a market neutral, mean reversion strategy that uses mathematical models to identify short-term anomalies in stock movements, balancing sales of stocks witnessing upside deviations (as defined by its models) with purchases of stocks witnessing downside deviations. Since the strategy will normally embed multidimensional neutrality (e.g., market, sector, capitalization, region, etc.), significant leverage is typically employed to achieve desired return levels. As a group, statistical arbitrage funds will often have significant overlap in the stocks they are long and short.

Pairs trading was successful in its early years, but lost its edge as too many proprietary trading groups and hedge funds employed similar strategies. Today’s statistical arbitrage models are far more complex, simultaneously trading hundreds or thousands of securities based on their relative price movements and correlations, subject to the constraint of maintaining multidimensional market neutrality (e.g., market, sector, etc.). Although mean reversion is typically at the core of this strategy, statistical arbitrage models may also incorporate other types of uncorrelated or even inversely correlated strategies, such as momentum and pattern recognition. Statistical arbitrage involves highly frequent trading activity, with trades lasting between seconds and days.

pages: 407 words: 104,622

The Man Who Solved the Market: How Jim Simons Launched the Quant Revolution
by Gregory Zuckerman
Published 5 Nov 2019

Team members didn’t know a thing about the stocks they traded and didn’t need to—their strategy was simply to wager on the re-emergence of historic relationships between shares, an extension of the age-old “buy low, sell high” investment adage, this time using computer programs and lightning-fast trades. New hires, including a former Columbia University computer-science professor named David Shaw and mathematician Robert Frey, improved profits. The Morgan Stanley traders became some of the first to embrace the strategy of statistical arbitrage, or stat arb. This generally means making lots of concurrent trades, most of which aren’t correlated to the overall market but are aimed at taking advantage of statistical anomalies or other market behavior. The team’s software ranked stocks by their gains or losses over the previous weeks, for example.

Frey and his colleagues couldn’t muster much interest among the Morgan Stanley brass for their innovative factor approach. “They told me not to rock the boat,” Frey recalls. Frey quit, contacting Jim Simons and winning his financial backing to start a new company, Kepler Financial Management. Frey and a few others set up dozens of small computers to bet on his statistical-arbitrage strategy. Almost immediately, he received a threatening letter from Morgan Stanley’s lawyers. Frey hadn’t stolen anything, but his approach had been developed working for Morgan Stanley. Frey was in luck, though. He remembered that Tartaglia hadn’t allowed him or anyone else in his group to sign the bank’s nondisclosure or noncompete agreements.

The idea that someone could use computers to beat these seasoned pros seemed far-fetched. Jim Simons, still struggling to make money trading stocks, didn’t need any reminder. Kepler Financial, the company launched by former Morgan Stanley math and computer specialist Robert Frey that Simons had backed, was just plodding along. The firm was improving on the statistical-arbitrage strategies Frey and others had employed at Morgan Stanley by identifying a small set of market-wide factors that best explained stock moves. The trajectory of United Airlines shares, for example, is determined by the stock’s sensitivity to the returns of the overall market, changes in the price of oil, the movement of interest rates, and other factors.

pages: 289 words: 113,211

A Demon of Our Own Design: Markets, Hedge Funds, and the Perils of Financial Innovation
by Richard Bookstaber
Published 5 Apr 2007

And well they 183 ccc_demon_165-206_ch09.qxd 7/13/07 2:44 PM Page 184 A DEMON OF OUR OWN DESIGN should, because someone else is getting saddled with the risk of the position, someone who most likely did not want to take on that position at the existing market price. Thus the demand for liquidity not only is the source of most price movement; it is at the root of most trading strategies. It is this liquidity-oriented, tectonic market shift that has made statistical arbitrage so powerful. Statistical arbitrage originated in the 1980s from the hedging demand of Morgan Stanley’s equity block-trading desk, which at the time was the center of risk taking on the equity trading floor. Like other broker-dealers, Morgan Stanley continually faced the problem of how to execute large block trades efficiently without suffering a price penalty.

There was money to be made, but the key was to hold many, many pairs to average out the market effects. The pairwise stock trades that form the elements of statistical arbitrage trading in the equity market are just one more flavor of spread trades. On an individual basis, they’re not very good spread trades. It is the diversification that comes from holding many pairs that makes this strategy a success. But even then, although its name suggests otherwise, statistical arbitrage is a spread trade, not a true arbitrage trade. Bamberger pitched his strategy, and surprisingly, given the politics of the firm, the equity division was willing to let him give it a try.

O’Connor’s Partnership was making hundreds of millions of dollars by applying the Black-Scholes formula to options in the nascent Chicago Board Options Exchange in the late 1970s and early 1980s, with a cadre of young traders grabbing their pricing sheets at the start of the day and taking their posts along the CBOE trading floor to apply delta hedges to mispriced options. By the mid-1980s, the writing was on the wall for margin contractions in the floor marketmaking business, and O’Connor’s sold itself to Swiss Bank. On the heels of the cash-futures and index arbitrage opportunities came statistical arbitrage, which was the first to emerge in a hedge fund structure. In 1985, the first statistical arbitrage strategy was developed at Morgan Stanley, by Gerry Bamberger, a young information technology (IT) person who had been assigned to work on some hedging issues on the equity trading floor. As we discussed earlier, Bamberger developed a pairs trading strategy that resulted in a burgeoning business for Morgan Stanley and spawned D.E.

pages: 389 words: 109,207

Fortune's Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall Street
by William Poundstone
Published 18 Sep 2006

Tartaglia continued to expand Morgan Stanley’s statistical arbitrage operation. By 1988 Tartaglia’s team was buying and selling $900 million worth of stock. Bamberger would often be trying to buy the same temporarily bargain-priced stock as Morgan Stanley, driving up the price. This cut into the profit. Bamberger, who had made a good deal of money, decided to retire. BOSS was closed down. Finally, according to stories, Morgan Stanley’s operation suffered a substantial loss. The bank closed down its statistical arbitrage business too. Thorp continued to tinker with statistical arbitrage. He replaced Bamberger’s division by industry groups with a more flexible “factor analysis” system.

You are unlikely to convince a skeptic that a manager’s return is not just luck when no one else can understand the logic of his stock picks. Indicators Project ONE OF THE BEST CASES for beating the stock market involves a scheme called statistical arbitrage. To make money in the market, you have to buy low and sell high. Why not use a computer to tell you which stocks are low and which are high? In concept, that is statistical arbitrage. Fundamental analysts look at scores of factors, many of them numerical, in deciding which stocks to buy. If there is any validity to this process, then it ought to be possible to automate it. Ed Thorp began pursuing this idea as early as 1979.

They are less likely to accept an apparent winning strategy that might be a mere statistical fluke.” Each statistical arbitrage operation competes against the others to scoop up the so-called free money created by market inefficiency. All successful operations revise their software constantly to keep pace with changing markets and the changing nature of their competition. The inexplicable aspect of Thorp’s achievement was his continuing ability to discover new market inefficiencies, year after year, as old ones played out. This is a talent, like discovering new theorems or jazz improvisations. Statistical arbitrage is nonetheless a few degrees easier to understand than the intuitive trading of more conventional portfolio managers.

pages: 504 words: 139,137

Efficiently Inefficient: How Smart Money Invests and Market Prices Are Determined
by Lasse Heje Pedersen
Published 12 Apr 2015

In 2008, the liquidity problems spread much more broadly around the economy and, in September 2008 a truly systemic liquidity crisis unfolded around the bankruptcy of Lehman Brothers. Ironically, the value/momentum quant equity strategies performed relatively well during 2008. 9.2. STATISTICAL ARBITRAGE Statistical arbitrage (stat arb) strategies are also quantitative, but they are usually less based on an analysis of economic fundamentals and more based on arbitrage relations and statistical relations. Dual-Listed Shares: Siamese Twin Stocks Some stocks are joined at the hip in the sense that their fundamental values are economically linked.

Quants build computer systems that generate trading signals based on these relations, carry out portfolio optimization in light of trading costs, and trade using automated execution schemes that route hundreds of orders every few seconds. In other words, trading is done by feeding data into computers that run various programs with human oversight. Some quants focus on high-frequency trading, where they exit a trade within milliseconds or minutes after it was entered. Others focus on statistical arbitrage, that is, trading at a daily frequency based on statistical patterns. Yet others focus on lower frequency trades called fundamental quant (or equity market neutral) investing. Fundamental quant investing considers many of the same factors as discretionary traders, seeking to buy cheap stocks and short sell expensive ones, but the difference is that fundamental quants do so systematically using computer systems.

This investment style comes in many shapes and forms, from Griffin buying illiquid convertible bonds to earn a liquidity risk premium, to Paulson buying merger targets being dumped by investors who demand liquidity for fear of event risk, to Soros riding a credit cycle, to Asness providing liquidity through statistical arbitrage trades. Carry trading is the investment style of buying securities with high “carry,” that is, securities that will have a high return if market conditions stay the same (e.g., if prices do not change). For instance, global macro investors are known to pursue the currency carry trade where they invest in currencies with high interest rates, bond traders often prefer high-yielding bonds, equity investors like stocks with high dividend yields, and commodity traders like commodity futures with positive “roll return.”

pages: 318 words: 87,570

Broken Markets: How High Frequency Trading and Predatory Practices on Wall Street Are Destroying Investor Confidence and Your Portfolio
by Sal Arnuk and Joseph Saluzzi
Published 21 May 2012

And sometimes, such as the May 6, 2010 Flash Crash, there is a “liquidity vacuum.” Andy Haldane, the Executive Director of Financial Stability at the Bank of England, in a July 8, 2011 speech titled “The Race to Zero,” described this as “adding liquidity in a monsoon and absorbing it in a drought.”6 Statistical Arbitrage Statistical Arbitrage (AKA, “stat arb”) has been in operation for decades. The type of example most often given is when IBM is trading “rich” in London and “cheap” on the NYSE, the stat arb guys will simultaneously short it in London and buy it back on the NYSE. Oh, if it were only that simple today.

When Did HFT Start? How Did HFT Become So Big? Why Have We Allowed This to Happen? Will There Be Another Market Crash? Where’s the SEC in All This? Endnotes Chapter 2 The Curtain Pulled Back on High Frequency Trading What Is High Frequency Trading, and Who Is Doing It? Market Making Rebate Arbitrage Statistical Arbitrage Market Structure and Latency Arbitrage Momentum Ignition How the World Began to Learn About HFT The SEC’s Round Table on Equity Market Structure—or Sal Goes to Washington 60 Minutes—or Joe Makes It to Primetime Endnotes Chapter 3 Web of Chaos NYSE and the Regionals NASDAQ SOES Instinet Problems for NYSE and NASDAQ Four For-Profit Exchanges Conflicts of Interest Fragmentation The Tale of the Aggregator Endnotes Chapter 4 Regulatory Purgatory Early 1990s Change in Regulations Late 1990s Regulations—Decimalization, Reg NMS, and Demutualization Early 2000s—Reg NMS Endnotes Chapter 5 Regulatory Hangover The Flash Order Controversy The Concept Release on Market Structure...Interrupted The Band-Aid Fixes Endnotes Chapter 6 The Arms Merchants Colocation Private Data Feeds Rebates for Order Flow (The Maker/Taker Model) Not Your Father’s Stock Exchange Endnotes Chapter 7 It’s the Data, Stupid Information for Sale on Hidden Customer Orders Data Theft on Wall Street The Heat Is On Phantom Indexes Machine-Readable News Who Owns the Data?

And, in many cases, the exchanges pay them to trade. In our Big Picture Conference presentation, we spoke about a few types of HFT: • “Market making” rebate arbitrage (we use quotations around “market making” because we really don’t see how it even closely resembles real market making) • Statistical arbitrage • Latency arbitrage • Momentum ignition Market Making Rebate Arbitrage This is probably the largest bucket of HFT. It is the style and strategy especially catered to by all the for-profit exchanges. With the exchanges becoming for-profit, and, in many cases, converting to publicly traded companies, such as the NYSE or NASDAQ, they now care very much about how to keep growing revenues.

pages: 374 words: 114,600

The Quants
by Scott Patterson
Published 2 Feb 2010

(In 1969, when the fund opened its doors for business, it had a stake of $1.4 million.) But Thorp wasn’t resting on his laurels. He was always on the lookout for new talent. In 1985, he ran across a hotshot trader named Gerry Bamberger who’d just abandoned a post at Morgan Stanley. Bamberger had created a brilliant stock trading strategy that came to be known as statistical arbitrage, or stat arb—one of the most powerful trading strategies ever devised, a nearly flawless moneymaking system that could post profits no matter what direction the market was moving. It was right up Thorp’s alley. Gerry Bamberger discovered stat arb almost by accident. A tall, quick-witted Orthodox Jew from Long Island, he’d joined Morgan Stanley in 1980 after earning a degree in computer science at Columbia University.

It may have been one of the most significant losses of talent in the history of Morgan Stanley. Shaw landed on his feet, starting up his own investment firm with $28 million in capital and naming his fund D. E. Shaw. It soon became one of the most successful hedge funds in the world. Its core strategy: statistical arbitrage. Tartaglia, meanwhile, hit a rough patch, and in 1988, Morgan’s higher-ups slashed APT’s capital to $300 million from $900 million. Tartaglia amped up the leverage, eventually pushing the leverage-to-capital ratio to 8 to 1 (it invested $8 for each $1 it actually had in its coffers). By 1989, APT had started to lose money.

The fund was diving into nearly every trading strategy known to man. In the early 1990s, it had thrived on convertible bonds and a boom in Japanese warrants. In 1994, it launched a “merger arbitrage” group that made bets on the shares of companies in merger deals. The same year, encouraged by Ed Thorp’s success at Ridgeline Partners, the statistical arbitrage fund he’d started up after shutting down Princeton/Newport, it launched its own stat arb fund. Citadel started dabbling in mortgage-backed securities in 1999, and plunged into the reinsurance business a few years later. Griffin created an internal market–making operation for stocks that would let it enter trades that flew below Wall Street’s radar, always a bonus to the secrecy-obsessed fund manager.

High-Frequency Trading
by David Easley , Marcos López de Prado and Maureen O'Hara
Published 28 Sep 2013

Michael Kearns is professor of computer and information science at the University of Pennsylvania, where he holds secondary appointments in the statistics and operations and information management departments of the Wharton School. His research interests include machine learning, algorithmic game theory, quantitative finance and theoretical computer science. Michael also has extensive experience working with quantitative trading and statistical arbitrage groups, including at Lehman Brothers, Bank of America and SAC Capital. David Leinweber was a co-founder of the Center for Innovative Financial Technology at Lawrence Berkeley National Laboratory. Previously, he was visiting fellow at the Hass School of Business and x i i i i i i “Easley” — 2013/10/8 — 11:31 — page xi — #11 i i ABOUT THE AUTHORS at Caltech.

He has published in the Journal of Finance, Journal of Business and Economic Statistics and Journal of Financial and Quantitative Analysis, among others. He has been a member of the Group of Economic Advisors of the European Securities and Market Authority (ESMA) since 2011. Yuriy Nevmyvaka has extensive experience in quantitative trading and statistical arbitrage, including roles as portfolio manager and head of groups at SAC Capital, Bank of America and Lehman Brothers. He has also published extensively on topics in algorithmic trading and market microstructure, and is a visiting scientist in the computer and information science department at the University of Pennsylvania.

We reviewed methods of constructing trading signals and illustrated them with a few examples. Our focus was on execution strategies for large orders of predetermined size and buy/sell direction. The other large class of strategies not discussed here contains the market-making and spread-capturing algorithms of statistical arbitrage. High-frequency trading has established a new normal mode in the equity markets and it is spreading in other asset classes. It is clear that executing orders in this environment requires fast information processing and fast action. Fast information processing leads to development and calibration of trading signals and adaptive algorithms.

pages: 192 words: 75,440

Getting a Job in Hedge Funds: An Inside Look at How Funds Hire
by Adam Zoia and Aaron Finkel
Published 8 Feb 2008

c01.indd 5 1/10/08 11:00:55 AM 6 Getting a Job in Hedge Funds Table 1.3 Instruments and Styles COMMONLY USED INSTRUMENTS HEDGE FUND STYLES Public Equities Long/Short Quantitative Fixed Income Long Bias Event-Driven/Special Situations Currencies Short Only Value Commodities Arbitrage Trading Oriented Derivatives/Futures Market Neutral Global Macro Private Equity Industry Focus Multi-strategy Convertible Bonds Distressed Geographic Focus Arbitrage Strategies There are various types of arbitrage strategies, and all seek to exploit imbalances between different financial markets such as currencies, commodities, and debt. Some of the more popular hedge fund arbitrage strategies are convertible fixed income, risk, and statistical arbitrage. Convertible Arbitrage This strategy is identified by hedge investing in the convertible securities of a company. To do this, a hedge fund manager would buy the convertible bonds of a company while at the same time selling (or shorting) the company’s common stock. Positions are designed to generate profits from the fixed income security as well as the short sale of stock, while protecting principal from market moves.

As such, they are typically long the stock of the company being acquired and short the stock of the acquirer. The principal risk is deal risk, should the deal fail to close. Merger arbitrage may hedge against market risk by purchasing Standard & Poor’s (S&P) 500 put options or put option spreads. Statistical Arbitrage Stat arb funds focus on the statistical mispricing of one or more assets based on the expected value of those assets. This is a very quantitative and systematic trading strategy that uses advanced software programs. Note: These funds typically hire PhDs, mathematicians, and/or programming experts.

These funds, some of which have billions of dollars in assets, can move the markets in which they invest when an internal buy or sell order is triggered. While quantitative strategies have sometimes produced stellar returns, there have also been some well-known failures of funds using this strategy. Some examples of funds that use quantitative investing strategies are statistical arbitrage, options arbitrage, fixed-income arbitrage, convertible bond arbitrage, mortgagebacked security arbitrage, derivatives arbitrage, equity market neutral, managed futures, and long/short funds. Sector-Specific Funds Some hedge fund managers may use any of the aforementioned strategies, but in doing so would focus investments on a specific sector of the market.

pages: 584 words: 187,436

More Money Than God: Hedge Funds and the Making of a New Elite
by Sebastian Mallaby
Published 9 Jun 2010

Presented with apparently random data and no further clues, they sift it repeatedly for patterns, exploiting the power of computers to hunt for ghosts that to the human eye would be invisible. Renaissance’s quantitative rivals have reason to avoid ghost hunting. The computer may find fake ghosts—patterns that exist for no reason beyond chance, and that consequently have no predictive value. Eric Wepsic, who runs statistical arbitrage at D. E. Shaw, gives the example of the Super Bowl: It used to be said that if a team from the original National Football League won, the market would head upward. As a matter of statistics, this relationship might hold; but as a matter of common sense, it is a meaningless coincidence. Because of the threat from coincidental correlations masquerading as predictive signals, Wepsic suggests that it is often dangerous to trade on statistical evidence unless it can be intuitively explained.

But once the firm realized that the correlations made intuitive sense—they reflected the technology euphoria that had pushed into all these industries—they seemed more likely to be tradable.27 Moreover, signals based on intuition have a further advantage: If you understand why they work, you probably understand why they might cease to work, so you are less likely to keep trading them beyond their point of usefulness. In short, Wepsic is saying that pure pattern recognition is a small part of what Shaw does, even if the firm does some of it. Again, this presents a contrast with Renaissance. Whereas D. E. Shaw grew out of statistical arbitrage in equities, with strong roots in fundamental intuitions about stocks, Renaissance grew out of technical trading in commodities, a tradition that treats price data as paramount.28 Whereas D. E. Shaw hired quants of all varieties, usually recruiting them in their twenties, the crucial early years at Renaissance were largely shaped by established cryptographers and translation programmers—experts who specialized in distinguishing fake ghosts from real ones.

Bit by bit, the old talk of luck and genius faded and the new lingo took its place—at hedge-fund conferences from Phoenix to Monaco, a host of consultants and gurus held forth about the scientific product they called alpha. The great thing about alpha was that it could be explained: Strategies such as Tom Steyer’s merger arbitrage or D. E. Shaw’s statistical arbitrage delivered uncorrelated, market-beating profits in a way that could be understood, replicated, and manufactured by professionals. And so the era of the manufacturer arrived. Innovation and inspiration gave way to a new sort of alpha factory. You could see this transformation all over the hedge-fund industry.

Stock Market Wizards: Interviews With America's Top Stock Traders
by Jack D. Schwager
Published 1 Jan 2001

In our age of computerization and near instantaneous communication, classic arbitrage opportunities are virtually nonexistent. Statistical arbitrage expands the classic arbitrage concept of simultaneously buying and selling identical financial instruments for a locked-in profit to encompass buying and selling closely related financial instruments for a probable profit. In statistical arbitrage, each individual trade is no longer a sure thing, but the odds imply an edge. The trader engaged in statistical arbitrage will lose on a significant percentage of trades but will be profitable over the long run, assuming trade probabilities and transaction costs have been accurately estimated.

An appropriate analogy would be roulette (viewed from the casino's perspective): The casino's DAVID SHAW: odds of winning on any particular spin of the wheel are only modestly better than fifty-fifty, but its edge and the laws of probability will assure that it wins over the long run. There are many different types of statistical arbitrage. We will focus on one example: pairs trading. In addition to providing an easy-to grasp illustration, pairs trading has the advantage of reportedly being one of the prime strategies used by the Morgan Stanley trading group, for which Shaw worked before he left to form his own firm. Pairs trading involves a two-step process.

National Bureau of Economic Research Working Paper No. 7032; March 1999. f HE Q U A N T I T A T I V E E D G E structure of identifying securities that are underpriced relative to other securities. However, that is where the similarity ends. A partial list of the elements of complexity that differentiate Shaw's trading methodology from a simple statistical arbitrage strategy, such as pairs trading, include some, and possibly all, of the following: Trading signals are based on over twenty different predictive techniques, rather than a single method. Each of these methodologies is probably far more sophisticated than pairs trading. Even if performance divergence between correlated securities is the core of one of these strategies, as it is for pairs trading, the mathematical structure would more likely be one that simultaneously analyzes the interrelationship of large numbers of securities, rather than one that analyzes two stocks at a time.

pages: 337 words: 89,075

Understanding Asset Allocation: An Intuitive Approach to Maximizing Your Portfolio
by Victor A. Canto
Published 2 Jan 2005

In fact, one can make the case that for the few strategies with higher monthly returns than the S&P 500, the differences do not appear to be statistically significant. Table 12.2 Average monthly returns and standard deviation for selected hedge-fund strategies: January 1990 to December 2004. Monthly Returns Standard Deviation Sharpe Ratio 0.69% 1.25% 0.95 HFRI Equity Market Neutral Index: 0.71% Statistical Arbitrage 1.14% 1.14 HFRI Equity Market Neutral Index 0.75% 0.92% 1.61 HFRI Fixed Income: High Yield Index 0.80% 1.84% 0.85 HFRI Fixed Income (Total) 0.86% 1.00% 1.79 HFRI Convertible Arbitrage Index 0.86% 0.98% 1.86 S&P 500 0.96% 4.23% 0.51 S&P 500 Equal Weighted 1.11% 4.53% 0.58 HFRI Event-Driven Index 1.19% 1.91% 1.53 HFRI Distressed Securities Index 1.23% 1.77% 1.71 HFRI Emerging Markets (Total) 1.29% 4.31% 0.76 HFRI Macro Index 1.29% 2.44% 1.35 HFRI Fixed Income : Arbitrage Index continues Chapter 12 Keeping the Wheels on the Hedge-Fund ATV 229 Table 12.2 continued Monthly Returns Standard Deviation Sharpe Ratio HFRI Equity Hedge Index 1.39% 2.58% 1.42 HFRI Market Timing Index 1.03% 1.95% 1.23 HFRI Composite Index 1.15% 2.00% 1.40 Source: Hedge Fund Research, Inc.

As a cycle-minded investor can guess, some simple tests reject the hypothesis that the runs in the data are randomly generated. 230 UNDERSTANDING ASSET ALLOCATION Five of the six hedge-fund strategies reported in Figures 12.1a through 12.1f— market neutral (see Figure 12.1a), fixed-income arbitrage (see Figure 12.1b), fixed-income high-yield (see Figure 12.1c), equity market neutral statistical arbitrage (see Figure 12.1e), and fixed-income (total) (see Figure 12.f)— underperformed the S&P 500 during the 1990–2004 period. The sixth strategy, convertible arbitrage (see Figure 12.1d), barely outperformed the S&P 500. The data also show most of the strategies were keeping up with the S&P 500 prior to 1994, as evidenced by the flat or rising relative performance line in Figures 12.1a, b, d, and e.

Chapter 12 Keeping the Wheels on the Hedge-Fund ATV 231 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1990 1992 1994 1996 1998 2000 2002 2004 Figure 12.1c Ratio of the fixed-income, high-yield hedge-fund index to the S&P 500. 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1990 1992 1994 1996 1998 2000 2002 2004 Figure 12.1d Ratio of the convertible arbitrage hedge-fund index to the S&P 500. 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1990 1992 Figure 12.1e 232 1994 1996 1998 2000 2002 2004 Ratio of the equity market neutral statistical arbitrage hedge-fund index to the S&P 500. UNDERSTANDING ASSET ALLOCATION 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1990 1992 1994 1996 1998 2000 2002 2004 Figure 12.1f Ratio of the fixed-income (total) hedge-fund index to the S&P 500. There’s a clear pattern of relative underperformance and outperformance for the hedge-fund strategies.

pages: 444 words: 151,136

Endless Money: The Moral Hazards of Socialism
by William Baker and Addison Wiggin
Published 2 Nov 2009

A town that has 100 traffic cops and no murder detectives probably won’t find any dead bodies, but its police force will be very busy and profitable. Evidence-Based Investing How else could one get the courage to lever up to five-to-one or even 30-to-1 as was the case in some investment banks and statistical arbitrage proprietary trading funds, without “proof ” that certain assets and liabilities would behave in correlation or within bands of normal distribution? One year before the equity market imploded due to the credit crisis, a class of hedge funds known as “statistical arbitrage” funds collapsed, foretelling the effect leverage was having on stability of the market. The premise of this fund category was that excess returns could be harvested from bets on mean reversion, such as spreads between certain categories of debt, or among equity sectors such banks that lend against real estate and REITs, which own property.

Probably half of all statistical arbitrage funds that deployed this strategy have moved on to greener pastures. But the use of value-at-risk statistical models to control exposure in hedge funds or even for large pension funds that allocate between different asset types continues, and it is virtually a mandatory exercise for institutional managers. There is hardly a large pension plan that has not developed a PowerPoint presentation that boasts it realigned its investments to increase excess return (alpha) and also reduced risk (variance). So in this sense, statistical arbitrage exists in some diluted form almost everywhere.

See also Capitalism; Fiat currency; Moral hazard Soros, George, 180–181, 184–185 Sowell, Thomas, 216 Specie, 36. See also Gold; Hard money INDEX Specie Circular, 49 Spitzer, Elliot, 322, 328 “Stamped money,” 113 Stanford, Allen, 330 Stanford Capital, 26 State Children’s Health Insurance Program (SCHIP), 202 Statistical arbitrage funds, 27–28 Stocks for the Long Run (Siegel), 31 Stolo, Licinius, 246 Strong, Benjamin, 64 Study of Administration (Wilson), 288 “Subprime Fiasco Exposes Manipulation by Mortgage Brokers” (Lubove, Taub), 148 Swaps, 125 Swope, Gerard, 317 Tabulae novae, 247 Taleb, Nassim Nicholas, 15, 16, 28, 280 Tallmadge, Benjamin, 3 Taub, Daniel, 148–149 Taxation: and federal budget deficit, 189–197 flat (or fair) tax, 202–204 history of, 197–202 overview, 188–189 Taylor Rule, 75–76 Taylor, John B., 75–76 Temin, Peter, 107–108, 114 Term Securities Lending Facility, 124–125 Theory of Moral Sentiments (Smith), 264 Tiberius, 249, 258 Tides Foundation, 180, 181 Torricelli Principle, 362 Trienans, Howard, 168 Troubled Asset Relief Program (TARP), 122, 128, 130, 139, 141, 143, 152, 214, 220, 235 Truman, Harry, 289 Index Turk, James, 350 Turner, Ted, 175 Turning Point Inc., 320 UBS, 22, 173 U.S.

pages: 701 words: 199,010

The Crisis of Crowding: Quant Copycats, Ugly Models, and the New Crash Normal
by Ludwig B. Chincarini
Published 29 Jul 2012

If an investment’s expected return is higher than the borrowing rate, a trader can amplify the return as a percentage of capital by borrowing at the lower rate and investing at the higher rate. Just as leverage amplifies gains, it also amplifies losses. LTCM had identified very high Sharpe ratio trades with very low volatility. To give investors meaningful returns, the fund leveraged its portfolio. Although most of LTCM’s trades were not pure arbitrages, but rather statistical arbitrages or quasi-arbitrages, it is helpful to illustrate this concept with a pure arbitrage. Suppose LTCM had identified a bond that would pay $100 in one year with certainty. It bought the bond at $90, giving an unlevered return of 10%. The risk for the one-year holding period was zero. With no leverage, LTCM could just wait, even if the bond’s price fell as low as $0.01 in the interim.

HighBridge Statistical Opportunities Fund was down 18% for the month; Tykhe Capital LLC, a New York-based quantitative fund, was down 20% for the month; AQR’s flagship fund was down 13% by August 10; by August 14, 2007, Goldman Sachs Global Equity Opportunities Fund had lost more than 30% in one week.10 What Was the Quant Crisis? A quant crisis is one that affects quantitative money managers, vaguely defined as any portfolio managers that use a quantitative system to manage trades, rather than a human-based security-picking system. The quant world includes various types of managers, including those in charge of statistical arbitrage hedge funds, many managed futures funds, and a large class of long-short or market-neutral equity funds. This quant crisis mainly affected funds using quantitative equity strategies. In 2007, the leading quant portfolio companies were Barclays Global Investors (BGI), Goldman Sachs Asset Management (GSAM), State Street, Morgan Stanley’s Process Driven Trading (PDT) group, AQR, First Quadrant, Analytic Investors, AXA Rosenberg, Panagora, Mellon Capital, Acadian, Analytic, and Numeric.

The largest of these were BGI, GSAM, and State Street. The leaders and traders in many of these quant funds earned PhDs from leading schools in finance, economics, and mathematics. In this crisis, the large negative returns seemed to disproportionately affect quantitative hedge funds, in particular quantitative equity hedge funds and statistical arbitrage funds.11 The value of common equity factors used to construct quantitative equity portfolios decreased in concert during this period, while their (typically low) correlations increased. Liquidity—especially in typical quant factors—completely dried up, especially during the week of August 6 to 13, 2007.

pages: 313 words: 101,403

My Life as a Quant: Reflections on Physics and Finance
by Emanuel Derman
Published 1 Jan 2004

A trader friend of mine summed it up succinctly when, after I commented to him that the fixed-income traders I knew seemed smarter than the equity traders, he replied that "that's because there's no competitive edge to being smart in the equities business" I don't mean to suggest that all quants work on the Black-Scholes model. Increasingly, some of them work on statistical arbitrage, the attempt to seek order and predictability in the patterns of past stock price movements and then exploit them-that is, to divine the future from the past. Hedge funds, private pools of capital that seek out subtle price discrepancies in odd and unexplored corners of markets, have become major employers of quants during the past five years, and continue to hire them to do "stat-arb" Risk management is also in mode, and for good reason.

The overheated tech-stock market of the late 1990s cast a warm, reflected glow on geeks of all types, as did the droves of hedge funds trying to use mathematical models to squeeze dollars out of subtleties. The guts to lose a lot of money carries its own aura. D.E. Shaw & Co., a NewYork trading house that was rumored to be making substantial profits doing "black box" computerized statistical arbitrage before their billion-dollar losses in 1998, and Long Term Capital Management, the quant-driven Connecticut hedge fund that ultimately needed a multibillion-dollar bailout, have both contributed to this more glamorous view of quantization. And indeed, many of the Long Term Capital protagonists are back in business again at new firms.

If you believe you have detected such a phenomenon, you short the expensive stock and buy the cheap one when the spread is large, and then reverse the trade when/if the spread narrows. Since Tartaglia's renowned but temporary successes at Morgan Stanley, trading houses, hedge funds, and the scientists they employ have regularly and hopefully attempted to build model-driven, so-called "statistical arbitrage" money machines of this type. 'At this time I also began attending various computer science research seminars and conferences, where I was always struck by the difference in quality between computer science research and physics research. In physics, seminar speakers described completed achievements.

pages: 338 words: 106,936

The Physics of Wall Street: A Brief History of Predicting the Unpredictable
by James Owen Weatherall
Published 2 Jan 2013

The closest thing from Farmer’s and Packard’s days as physicists that was helpful in their early days with the Prediction Company was the work in Farmer and Sidorowich (1987), where they present a method for making short-term predictions based on a particular algorithmic approximation. “One strategy they used was something called statistical arbitrage . . .”: For more on the history of statistical arbitrage, see Bookstaber (2007). Ed Thorp also played a significant role in the early development of the idea; for more on his contribution, see Thorp (2004). “. . . a variety of computer programs known as genetic algorithms”: For more on genetic algorithms, see, for instance, Mitchell (1998).

It was a search for regularities of the same sort that lots of investors look for: how markets react to economic news like interest rates or employment numbers, how changes in one market manifest themselves in others, how the performances of different industries are intertwined. One strategy they used was something called statistical arbitrage, which works by betting that certain statistical properties of stocks will tend to return even if they disappear briefly. The classic example is pairs trading. Pairs trading works by observing that some companies’ stock prices are usually closely correlated. Consider Pepsi and Coca-Cola. Virtually any news that isn’t company-specific is likely to affect Pepsi’s products in just the same way as Coca-Cola’s, which means that the two stock prices usually track one another.

pages: 224 words: 13,238

Electronic and Algorithmic Trading Technology: The Complete Guide
by Kendall Kim
Published 31 May 2007

In this regard, human traders making the final execution decisions still have a decided advantage over pure algorithmic or program trading. The FIX Protocol has allowed different proprietary systems to plug into a common standard and communicate with one another. Some trading programs are designed to decide which shares to buy and sell. These are used for statistical arbitrage, the practice of monitoring and comparing share prices to identify patterns that can be exploited to make a profit. Some exchanges now regulate the use of electronic and algorithmic trading, preventing their systems from being overloaded or to avoid repeating the crash of 1987. On July 7, 2005, the London Stock Exchange asked for algorithmic trading to be suspended after the London bombings.

Xenomorph begins its second decade of growth. Xenomorph’s TimeScape is the current product enhanced and refined over the last 10 years. They currently have 30 clients globally, with investment banks accounting for 50% of their client base, and hedge funds specializing in convertible bond and statistical arbitrage along with asset management firms comprising the remainder. Apama Apama is an independent financial technology firm, founded in 2000, which provides outsourced trading strategies. Apama is designed to reduce the time taken to deploy and maintain an algorithmic trading solution. Apama currently has clients on both the buy and the sell side, with major clients including JP Morgan, ABN Amro, and Deutsche Bank.

The Handbook of Personal Wealth Management
by Reuvid, Jonathan.
Published 30 Oct 2011

Some funds negate exposure to market capitalization and sector exposures and may invest an equal number of stocks on both the long and short sides. Market neutral funds are further broken down into fundamental stock pickers, quantitative based (where the portfolios can be re-balanced by an optimizer ranging in frequency from once a week to quarterly) and statistical arbitrage where more frequent intra-day optimization is achieved. The goal is to derive returns (if all idiosyncratic risks are removed) through stock-picking and efficient execution. Global macro Macro funds may invest in any market, and frequently use leverage and derivatives, futures and swaps to make directional trades in equities, interest rates, currencies and commodities.

Fixed income arbitrage This strategy requires leverage, which is now scarce, in order to generate positive returns when credit spreads are narrowing. During 2008 credit spreads widened and leverage was removed. There were large redemptions from this strategy throughout the year and many hedge funds operating this strategy have been forced to close. Statistical arbitrage This market-neutral strategy profits from high-frequency trading with stock holding periods ranging from seconds to months. The volatile trading environment of 2008 has meant that some of the shorter-term positions were able to produce positive ឣ 34 PORTFOLIO INVESTMENT _________________________________________________ returns.

pages: 280 words: 73,420

Crapshoot Investing: How Tech-Savvy Traders and Clueless Regulators Turned the Stock Market Into a Casino
by Jim McTague
Published 1 Mar 2011

He was friendly, patient, and forceful, and he had a gift for lecture. He had hung a white board in his office to illustrate his arguments. After graduating from MIT in 1991 with a degree in mathematics and computer science, Narang began working on the proprietary trading desk at First Boston, engaging in statistical arbitrage. He expected the job to be temporary. His plan was to return to academia in a year or so to obtain a Ph.D. in mathematics, but he was bitten by the Wall Street bug. Narang discovered that he enjoyed trading, so he traded virtually everything, from Treasury bonds to equities. Over the next eight years, he worked for a number of Wall Street’s largest firms, including Goldman Sachs.

If on a given day a stock rose in value by X dollars, for instance, the traders might judge the move to be extreme, based on 20 years’ worth of pricing, volume, and related data, and short the stock, expecting it to correct back down. If the underlying company was a big food producer, the stock’s fall might affect the prices of agricultural futures on the commodities exchange. The super-fast computers would exploit such correlations. Statistical arbitrage was a variation on the age-old theme of buy low and sell high, but with some twists. For instance, a trader did not always buy and sell exactly the same stock. The trader could buy a high-tech stock such as Microsoft when it was trending lower and immediately sell an index or exchange-traded fund (ETF) of high-tech stocks such as the QQQ, which has Microsoft as a component and would adjust downward to reflect Microsoft’s lower market value.

pages: 245 words: 75,397

Fed Up!: Success, Excess and Crisis Through the Eyes of a Hedge Fund Macro Trader
by Colin Lancaster
Published 3 May 2021

Ed wrote Beat the Dealer, which was the first book to prove mathematically that blackjack could be beaten by card counting, and Beat the Market, which outlined many of the early arbitrage strategies. The guy was (and still is) an incredible innovator, everything from option arbitrage, warrant modeling, convertible arbitrage, index arbitrage, and statistical arbitrage. His superpower is being an incredible decision maker. He always has clarity. He made his dough in something called statistical arbitrage; he basically invented it. He was able to take his math skills and invent a whole new way of investing. Everything he does is supported by the odds. They’re always in his favor. This is a hallmark of people who are uber-rational, guys such as Warren Buffet, who always seems to have all of the liquidity, all of the buying power, when other people really need it.

pages: 483 words: 141,836

Red-Blooded Risk: The Secret History of Wall Street
by Aaron Brown and Eric Kim
Published 10 Oct 2011

But if interest rates went up, few people would refinance, and the security holders would get back less than the expected cash flows, at a time when they wanted to take advantage of the higher rates. Prepayment risk was much too small to justify the yield difference. It was possible to trade GNMAs actively, along with bond futures and options, to lock in highly predictable profits. At the time we called this a statistical arbitrage. An arbitrage is a trade with no risk and positive profit. A statistical arbitrage is a trade with controllable risk that is much smaller than the expected positive profit. A good example is a roulette wheel from the standpoint of a casino. Today, however, the term stat arb has been taken over by a group of strategies descended from pairs trading.

See Securities and Exchange Commission (SEC) Secret history of Wall Street: 1654–1982 period 1983–1987 period 1988–1992 period 1993–2007 period Securities and Exchange Commission (SEC) Securitization Seven principles of risk management: I: risk duality II: valuable boundary III: risk ignition IV: money V: evolution VI: superposition VII: game theory Sharpe ratio Shiller, Robert Smile and skew option Soros, George Sports betting/bettors Spread trade Squam Lake Report, The (French, et. al.) Statistical arbitrage Statistical Decision Functions (Wald) Statistical games Statistical reasoning, basic principles Statistics, history of Stigler, Steven Still Life with a Bridle (Herbert) Stock market crash: Monday, October 19, 1987 Stoller, Martin Stoller, Phil Stone Age Economics (Sahlins) Story of money: 1776, continental dollars Andrew Dexter generally government and paper paleonomics paper vs. metal property, exchange and risk transition what money does Strange Days Indeed (Wheen) Stress tests Sull, Donald Superposition Tail risk—extreme events Tale of High-Flying Speculation and America’s First Banking Collapse, A (Kamensky) Taleb, Nassim Tett, Gillian Thaler, Richard 13 Bankers ( Johnson) Thirty Years War Theory of Blackjack, The (Griffin) Thorp, Edward To Engineer Is Human (Petroski) “Tolling” swap Trading from Your Gut (Faith) Trading risk Transaction taxes Treasury bills/bonds Trust in Numbers (Porter) Tukey, John Tulips/tulipomania Unspeakable truths: good stuff beyond VaR limit parametric risk managers create risk risk managers should make sure firms fail Upside of Turbulence, The (Sull) Useless Arithmetic (Pilkey) Utility theory: change of numeraire and decision maker identity and declining marginal utility and extensions utility maximization Valuable boundary Value at risk (VaR).

How I Became a Quant: Insights From 25 of Wall Street's Elite
by Richard R. Lindsey and Barry Schachter
Published 30 Jun 2007

Their approach will most likely be more analytical and closer to “quantitative” than traditional managers, thus blurring the lines between quant and nonquant. Finally, I think that quantitative asset management’s range is going to increase dramatically over the next 10 years. Today when people think about quantitative asset management they usually think about statistical arbitrage or global tactical asset allocation. Over time, I see quantitative methods being applied to an increasing range of products. Driving this will be increased liquidity in new markets, the availability of data to analyze and the availability of electronic access to those markets. JWPR007-Lindsey May 7, 2007 16:55 136 JWPR007-Lindsey April 30, 2007 19:47 Chapter 8 Peter Carr Head of Quantitative Financial Research, Bloomberg I ’m thrilled to be asked to describe how I became a quant.

Active Portfolio Strategies Cooper Neff had two incarnations: first as an options market maker on exchanges around the world, next as a technology-driven, quantitative modeling firm trading equities at unheard-of high frequencies. The inflection point was in 1995, the year Cooper Neff was acquired by French bank BNP. Active Portfolio Strategies, or APS, was our version of equity statistical arbitrage, but no one ever used those terms at the firm. To us, equity stat arb meant pairs trading or exploiting the residuals of an equity factor model, and nothing we were doing had anything in common with these strategies. So we made up our own name. The genesis of APS came, oddly enough, while I was working at CoreStates in 1987.

At AQR our IT department gets a kick out of this as I often yell for help because I’ve lost the ability to display “Helvetica font.” 4. One of these “other things” in my dissertation was a simulation study I never published that I still think is neat and an early study of what is now known as statistical arbitrage, where I concluded that it’s interesting, but doesn’t cover transactions costs, and then ignored several easy improvements, thereby not participating in one of the great hedge fund strategies of the late twentieth century. 5. It didn’t hurt that I’d be working with my best friend Jonathan Beinner (Jon is now a Goldman partner co-running the fixed income group).

pages: 345 words: 86,394

Frequently Asked Questions in Quantitative Finance
by Paul Wilmott
Published 3 Jan 2007

Now we can see that there are several types of arbitrage that we can think of. Here is a list and description of the most important.• A static arbitrage is an arbitrage that does not require rebalancing of positions • A dynamic arbitrage is an arbitrage that requires trading instruments in the future, generally contingent on market states • A statistical arbitrage is not an arbitrage but simply a likely profit in excess of the risk-free return (perhaps even suitably adjusted for risk taken) as predicted by past statistics • Model-independent arbitrage is an arbitrage which does not depend on any mathematical model of financial instruments to work. For example, an exploitable violation of put-call parity or a violation of the relationship between spot and forward prices, or between bonds and swaps • Model-dependent arbitrage does require a model.

Example Suppose you have two stocks S1 and S2 and you find that S1 − 3 S2 is stationary, so that this combination never strays too far from its mean. If one day this ‘spread’ is particularly large then you would have sound statistical reasons for thinking the spread might shortly reduce, giving you a possible source of statistical arbitrage profit. This can be the basis for pairs trading. Long Answer The correlations between financial quantities are notoriously unstable. Nevertheless correlations are regularly used in almost all multivariate financial problems. An alternative statistical measure to correlation is cointegration.

pages: 369 words: 94,588

The Enigma of Capital: And the Crises of Capitalism
by David Harvey
Published 1 Jan 2010

The ‘shadow banking system’ emerges 1980 Currency swaps 1981 Portfolio insurance introduced; interest rate swaps; futures markets in Eurodollars, in Certificates of Deposit and in Treasury instruments 1983 Options markets on currency, equity values and Treasury instruments; collateralised mortgage obligation introduced 1985 Deepening and widening of options and futures markets; computerised trading and modelling of markets begins in earnest; statistical arbitrage strategies introduced 1986 Big Bang unification of global stock, options and currency trading markets 1987–8 Collateralised Debt Obligations (CDOs) introduced along with Collateralised Bond Obligations (CBOs) and Collateralised Mortgage Obligations (CMOs) 1989 Futures on interest rate swaps 1990 Credit default swaps introduced along with equity index swaps 1991 ‘Off balance sheet’ vehicles known as special purpose entities or special investment vehicles sanctioned 1992–2009 Rapid evolution in volume of trading across all of these instruments.

.: Limits to Growth 72 meat-based diets 73, 74 Medicare 28–9, 224 Mellon, Andrew 11, 98 mercantilism 206 merchant capitalists 40 mergers 49, 50 forced 261 Merrill Lynch 12 Merton, Robert 100 methane gas 73 Mexico debt crisis (1982) 10, 19 northern Miexico’s proximity to the US market 36 peso rescue 261 privatisation of telecommunications 29 and remittances 38 standard of living 10 Mexico City 243 microcredit schemes 145–6 microeconomics 237 microenterprises 145–6 microfinance schemes 145–6 Middle East, and oil issue 77, 170, 210 militarisation 170 ‘military-industrial complex’ 91 minorities: colonisation of urban neighbourhoods 247, 248 Mitterrand, François 198 modelling of markets 262 modernism 171 monarchy 249 monetarism 237 monetisation 244 money centralised money power 49–50, 52 a form of social power 43, 44 limitlessness of 43, 47 loss of confidence in the symbols/quality of money 114 universality of 106 monoculture 186 Monopolies Commission 52 monopolisation 43, 68, 95, 113, 116, 221 Monsanto 186 Montreal Protocol (1989) 76, 187 Morgan Stanley 19 Morishima, Michio 70 Morris, William 160 mortgages annual rate of change in US mortgage debt 7 mortgage finance for housing 170 mortgage-backed bonds futures 262 mortgage-backed securities 4, 262 secondary mortgage market 173, 174 securitisation of local 42 securitisation of mortgage debt 85 subprime 49, 174 Moses, Robert 169, 171, 177 MST (Brazil) 257 multiculturalism 131, 176, 231, 238, 258 Mumbai, India anti-Muslim riots (early 1990s) 247 redevelopment 178–9 municipal budgets 5 Museum of Modern Art, New York 21 Myrdal, Gunnar 196 N Nandigram, West Bengal 180 Napoleon III, Emperor 167, 168 national debt 48 National Economic Council (US) 11, 236 national-origin quotas 14 nationalisation 2, 4, 8, 224 nationalism 55–6, 143, 194, 204 NATO 203 natural gas 188 ‘natural limits’ 47 natural resources 30, 71 natural scarcity 72, 73, 78, 80, 83, 84, 121 nature and capital 88 ‘first nature’ 184 relation to 121, 122 ‘the revenge of nature’ 185 ‘second nature’ 184, 185, 187 as a social product 188 neocolonialism 208, 212 neoliberal counter-revolution 113 neoliberalism 10, 11, 19, 66, 131, 132, 141, 172, 175, 197, 208, 218, 224, 225, 233, 237, 243, 255 Nepal: communist rule in 226 Nevada, foreclosure wave in 1 New Deal 71 ‘new economy’ (1990s) 97 New Labour 45, 255 ‘new urbanism’ movement 175 New York City 11 September 2001 attacks 41 fiscal crisis (1975) 10, 172, 261 investment banks 19, 28 New York metropolitan region 169, 196 Nicaragua 189 Niger delta 251 non-governmental organisations (NGOs) 35, 253–4 non-interventionism 10 North Africa, French import of labour from 14 North America, settlement in 145 North American Free Trade Association (NAFTA) 200 Northern Ireland emergency 247 Northern Rock 2 Norway: Nordic cris (1992) 8 nuclear power 188 O Obama, Barack 11, 27, 34, 210 Obama administration 78, 121 O’Connor, Jim 77, 78 offshoring 131 Ogoni people 251 oil cheap 76–7 differential rent on oil wells 83 futures 83, 84 a non-renewable resource 82 ‘peak oil’ 38, 73, 78, 79, 80 prices 77–8, 80, 82–3, 261 and raw materials prices 6 rents 83 United States and 76–7, 79, 121, 170, 210, 261 OPEC (Organisation of Oil-Producing Countries) 83, 84 options markets currency 262 equity values 262 unregulated 99, 100 Orange County, California bankruptcy 100, 261 Organisation for Economic Cooperation and Development (OECD) 51 organisational change 98, 101 organisational forms 47, 101, 121, 127, 134, 238 Ottoman Empire 194 ‘over the counter’ trading 24, 25 overaccumulation crises 45 ozone hole 74 ozone layer 187 P Pakistan: US involvement 210 Palley, Thomas 236 Paris ‘the city of light’ 168 epicentre of 1968 confrontations 177, 243 Haussmann’s rebuilding of 49, 167–8, 169, 171, 176 municipal budget crashes (1868) 54 Paris Commune (1871) 168, 171, 176, 225, 243, 244 Partnoy, Frank: Ubfectious Greed 25 patents 221 patent laws 95 patriarchy 104 pensions pension funds 4, 5, 245 reneging on obligations 49 Péreire brothers 49, 54, 98, 174 pesticides 185, 186, 187 petty bourgeois 56 pharmaceutical sector 129, 245 philanthropy 44 Philippines: excessive urban development 8 Phillips, Kevin 206 Pinochet, General Augusto 15, 64 plant 58 Poland, lending to 19 political parties, radical 255–6 politics capitalist 76 class 62 co-revolutionary 241 commodified 219 depoliticised 219 energy 77 identity 131 labour organizing 255 left 255 transformative 207 pollution air 77 oceanic 74 rights 21 ‘Ponts et Chaussées’ organisation 92 Ponzi schemes 21, 114, 245, 246 pop music 245–6 Pope, Alexander 156 population growth 59, 72, 74, 121, 167 and capital accumulation 144–7 populism 55–6 portfolio insurance 262 poverty and capitalism 72 criminalisation and incarceration of the poor 15 feminisation of 15, 258 ‘Great Society’ anti-poverty programmes 32 Prague 243 prices commodity 37, 73 energy 78 food grain 79–80 land 8, 9, 182–3 oil 8, 28, 37–8, 77–8, 80, 82–3, 261 property 4, 182–3 raw material 37 reserve price 81–2 rising 73 share 7 primitive accumulation 58, 63–4, 108, 249 private consortia 50 private equity groups 50 private property and radical egalitarianism 233, 234 see also property markets; property rights; property values privatisation 10, 28, 29, 49, 251, 256, 257 pro-natal policies 59 production expansion of 112, 113 inadequate means of 47 investment in 114 liberating the concept 87 low-profit 29 offshore 16 production of urbanisation 87 reorganisation and relocation of 33 revolutionising of 89 surplus 45 technologies 101 productivity agreements 14, 60, 96 agricultural 119 cotton industry 67 gains 88, 89 Japan and West Germany 33 rising 96, 186 products development 95 innovation 95 new lines 94, 95 niches 94 profit squeeze 65, 66, 116 profitability constrains 30 falling 94, 131 of the financial sector 51 and wages 60 profits easy 15 excess 81, 90 falling 29, 72, 94, 116, 117 privatising 10 rates 70, 94, 101 realisation of 108 proletarianisation 60, 62 property markets crash in US and UK (1973–75) 8, 171–2, 261 overextension in 85 property market-led Nordic and Japanese bank crises 261 property-led crises (2007–10) 10, 261 real estate bubble 261 recession in UK (after 1987) 261 property rights 69, 81–2, 90, 122, 179, 198, 233, 244, 245 Property Share Price Index (UK) 7 property values 171, 181, 197, 248 prostitution 15 protectionism 31, 33, 43, 211 punctuated equilibrium theory of natural evolution 130 Putin, Vladimir 29, 80 Q Q’ing dynasty 194 quotas 16 R R&D (research and development) 92, 95–6 race issues 104 racism 61, 258 radical egalitarianism 230–34 railroads 42, 49, 191 Railwan, rise of (1970s) 35 rare earth metals 188 raw materials 6, 16, 37, 58, 77, 101, 113, 140, 144, 234 RBS 20 Reagan, Ronald 15, 64, 131, 141 Reagan-Thatcher counter revolution (early 1980s) 71 Reagan administration 1, 19 Reagan recession (1980–82) 60, 261 Real Estate Investment Trusts (US) 7 recession 1970s 171–2 language of 27 Reagan (1980–82) 60, 261 Red Brigade 254 reforestation 184 refrigeration 74 reinvestment 43, 45, 66–7, 110–12, 116 religious fundamentalism 203 religious issues 104 remittances 38, 140, 147 rentiers 40 rents differential rent 81, 82, 83 on intellectual property rights 221 land 182 monetisation of 48, 109 monopoly 51, 81–2, 83 oil 83 on patents 221 rising 181 reproduction schemas 70 Republican Party (US) 11, 141 reserve price 81 resource values 234 Ricardo, David 72, 94 risks, socialising 10 robbery 44 Robinson, Joan 238 robotisation 14, 136 Rockefeller, John D. 98 Rockefeller brothers 131 Rockefeller foundation 44, 186 Roman Empire 194 Roosevelt, Franklin D. 71 Rothschild family 98, 163 Royal Society 91, 156 royalties 40 Rubin, Robert 98 ‘rule of experts’ 99, 100–101 Russia bankruptcy (1998) 246, 261 capital flight crisis 261 defaults on its debt (1998) 6 oil and natural gas flow to Ukraine 68 oil production 6 oligarchs 29 see also Soviet Union S Saddam Hussein 210 Saint-Simon, Claude Henri de Rouvroy, Comte de 49 Saint-Simonians 87, 168 Salomon Brothers 24 Samuelson, Robert 235, 239 Sandino, Augusto 189 Sanford, Charles 98 satellites 156 savings 140 Scholes, Myron 100 Schumer, Charles 11 Schumpeter, Joseph 46 Seattle battle of (1999) 38, 227 general strike (1918) 243 software development in 195 Second World War 32, 168–70, 214 sectarianism 252 securitisation 17, 36, 42 Sejong, South Korea 124–6 service industries 41 sexism 61 sexual preferences issues 104, 131, 176 Shanghai Commune (1967) 243 shark hunting 73, 76 Shell Oil 79, 251 Shenzhen, China 36 shop floor organisers (shop stewards) 103 Silicon Valley 162, 195, 216 Singapore follows Japanese model 92 industrialisation 68 rise of (1970s) 35 slavery 144 domestic 15 slums 16, 151–2, 176, 178–9 small operators, dispossession of 50 Smith, Adam 90, 164 The Wealth of Nations 35 social democracy 255 ‘social democratic’ consensus (1960s) 64 social inequality 224 social relations 101, 102, 104, 105, 119, 121, 122, 123, 126, 127, 135–9, 152, 240 loss of 246 social security 224 social services 256 social struggles 193 social welfarism 255 socialism 136, 223, 228, 242, 249 compared with communism 224 solidarity economy 151, 254 Soros, George 44, 98, 221 Soros foundation 44 South Korea Asian Currency Crisis 261 excessive urban development 8 falling exports 6 follows Japanese model 92 rise of (1970s) 35 south-east Asia: crash of 1997–8 6, 8, 49, 246 Soviet Union in alliance with US against fascism 169 break-up of 208, 217, 227 collapse of communism 16 collectivisation of agriculture 250 ‘space race’ (1960s and 1970s) 156 see also Russia space domination of 156–8, 207 fixed spaces 190 ‘space race’ (1960s and 1970s) 156 Spain property-led crisis (2007–10) 5–6, 261 unemployment 6 spatial monopoly 164–5 special drawing rights 32, 34 special economic zones 36 special investment vehicles 36, 262 special purpose entities 262 speculation 52–3 speculative binges 52 speed-up 41, 42 stagflation 113 stagnation 116 Stalin, Joseph 136, 250 Standard Oil 98 state formation 196, 197, 202 state-corporate nexus 204 ‘space race’ (1960s and 1970s) 156 state-finance nexus 204, 205, 237, 256 blind belief in its corrective powers 55 ‘central nervous system’ for capital accumulation 54 characteristics of a feudal institution 55 and the current crisis 118 defined 48 failure of 56–7 forms of 55 fusion of state and financial powers 115 innovation in 85 international version of 51 overwhelmed by centralised credit power 52 pressure on 54 radical reconstruction of 131 role of 51 and state-corporate research nexus 97 suburbanisation 171 tilts to favour particular interests 56 statistical arbitrage strategies 262 steam engine, invention of 78, 89 Stiglitz, Joseph 45 stimulus packages 261 stock markets crash (1929) 211, 217 crashes (2001–02) 261 massive liquidity injections (1987) 236, 261 Stockton, California 2 ’structural adjustment’ programmes vii, 19, 261 subcontracting 131 subprime loans 1 subprime mortgage crisis 2 substance abuse 151 suburbanisation 73, 74, 76–7, 106–7, 169, 170, 171, 181 Summers, Larry 11, 44–5, 236 supermarket chains 50 supply-side theory 237 surveillance 92, 204 swaps credit 21 Credit Default 24, 262 currency 262 equity index 262 interest rate 24, 262 Sweden banking system crash (1992) 8, 45 Nordic crisis 8 Yugoslav immigrants 14 Sweezey, Paul 52, 113 ‘switching crises’ 93 systematic ‘moral hazard’ 10 systemic risks vii T Taipei: computer chips and household technologies in 195 Taiwan falling exports 6 follows Japanese model 92 takeovers 49 Taliban 226 tariffs 16 taxation 244 favouring the rich 45 inheritance 44 progressive 44 and the state 48, 145 strong tax base 149 tax rebates 107 tax revenues 40 weak tax base 150 ‘Teamsters for Turtles’ logo 55 technological dynamism 134 technologies change/innovation/new 33, 34, 63, 67, 70, 96–7, 98, 101, 103, 121, 127, 134, 188, 193, 221, 249 electronic 131–2 ‘green’ 188, 221 inappropriate 47 labour fights new technologies 60 labour-saving 14–15, 60, 116 ‘rule of experts’ 99, 100–101 technological comparative edge 95 transport 62 tectonic movements 75 territorial associations 193–4, 195, 196 territorial logic 204–5 Thailand Asian Currency Crisis 261 excessive urban development 8 Thatcher, Margaret, Baroness 15, 38, 64, 131, 197, 255 Thatcherites 224 ‘Third Italy’, Bologna 162, 195 time-space compression 158 time-space configurations 190 Toys ‘R’ Us 17 trade barriers to 16 collapses in foreign trade (2007–10) 261 fall in global international trade 6 increase in volume of trading 262 trade wars 211 trade unions 63 productivity agreements 60 and US auto industry 56 trafficking human 44 illegal 43 training 59 transport costs 164 innovations 42, 93 systems 16, 67 technology 62 Treasury Bill futures 262 Treasury bond futures 262 Treasury instruments 262 TRIPS agreement 245 Tronti, Mario 102 Trotskyists 253, 255 Tucuman uprising (1969) 243 Turin: communal ‘houses of the people’ 243 Turin Workers Councils 243 U UBS 20 Ukraine, Russian oil and natural gas flow to 68 ultraviolet radiation 187 UN Declaration of Human Rights 234 UN development report (1996) 110 Un-American Activities Committee hearings 169 underconsumptionist traditions 116 unemployment 131, 150 benefits 60 creation of 15 in the European Union 140 job losses 93 lay-offs 60 mass 6, 66, 261 rising 15, 37, 113 and technological change 14, 60, 93 in US 5, 6, 60, 168, 215, 261 unionisation 103, 107 United Fruit Company 189 United Kingdom economy in serious difficulty 5 forced to nationalise Northern Rock 2 property market crash 261 real average earnings 13 train network 28 United Nations 31, 208 United States agricultural subsidies 79 in alliance with Soviet Union against fascism 169 anti-trust legislation 52 auto industry 56 blockbusting neighbourhoods 248 booming but debt-filled consumer markets 141 and capital surplus absorption 31–2 competition in labour markets 61 constraints to excessive concentration of money power 44–5 consumerism 109 conumer debt service ratio 18 cross-border leasing with Germany 142–3 debt 158, 206 debt bubble 18 fiscal crises of federal, state and local governments 261 health care 28–9 heavy losses in derivatives 261 home ownership 3 housing foreclosure crises 1–2, 4, 38, 166 industries dependent on trade seriously hit 141 interventionism in Iraq and Afghanistan 210 investment bankers rescued 261 investment failures in real estate 261 lack of belief in theory of evolution 129 land speculation scheme 187–8 oil issue 76–7, 79, 80, 121, 170, 210, 261 population growth 146 proletarianisation 60 property-led crisis (2007–10) 261 pursuit of science and technology 129 radical anti-authoritarianism 199 Reagan Recession 261 rescue of financial institutions 261 research universities 95 the reversing origins of US corporate profits (1950–2004) 22 the right to the city movement 257 ‘right to work’ states 65 savings and loan crisis (1984–92) 8 secondary mortgage market 173 ‘space race’ (1960s and 1970s) 156 suburbs 106–7, 149–50, 170 train network 28 unemployment 5, 6, 60, 168, 215, 261 unrestricted capitalist development 113 value of US stocks and homes, as a percentage of GDP 22 and Vietnam War 171 wages 13, 62 welfare provision 141 ‘urban crisis’ (1960s) 170 urban ‘heat islands’ 77 urban imagineering 193 urban social movements 180 urbanisation 74, 85, 87, 119, 131, 137, 166, 167, 172–3, 174, 240, 243 US Congress 5, 169, 187–8 US Declaration of Independence 199 US National Intelligence Council 34–5 US Senate 79 US Supreme Court 179 US Treasury and Goldman Sachs 11 rescue of Continental Illinois Bank 261 V Vanderbilt family 98 Vatican 44 Veblen, Thorstein 181–2 Venezuela 256 oil production 6 Vietnam War 32, 171 Volcker, Paul 2, 236 Volcker interest rate shock 261 W wage goods 70, 107, 112, 162 wages and living standards 89 a living wage 63 national minimum wage 63 rates 13, 14, 59–64, 66, 109 real 107 repression 12, 16, 21, 107, 110, 118, 131, 172 stagnation 15 wage bargaining 63 Wal-Mart 17, 29, 64, 89 Wall Street, New York 35, 162, 200, 219, 220 banking institutions 11 bonuses 2 ‘Party of Wall Street’ 11, 20, 200 ‘War on Terror’ 34, 92 warfare 202, 204 Wasserstein, Bruce 98 waste disposal 143 Watt, James 89 wealth accumulation by capitalist class interests 12 centralisation of 10 declining 131 flow of 35 wealth transfer 109–10 weather systems 153–4 Weather Underground 254 Weill, Sandy 98 Welch, Jack 98 Westphalia, Treaty of (1648) 91 Whitehead, Alfred North 75 Wilson, Harold 56 wind turbines 188 women domestic slavery 15 mobilisation of 59, 60 prostitution 15 rights 176, 251, 258 wages 62 workers’ collectives 234 working hours 59 World Bank 36, 51, 69, 192, 200, 251 ‘Fifty Years is Enough’ campaign 55 predicts negative growth in the global economy 6 World Bank Development Report (2009) 26 World Trade Organisation (WTO) 200, 227 agreements 69 street protests against (Seattle, 1999) 55 TRIPS agreement 245 and US agricultural subsidies 79 WorldCom 8, 100, 261 worldwide web 42 Wriston, Walter 19 X X-rays 99 Y Yugoslavia dissolution of 208 ethnic cleansings 247 Z Zapatista revolutionary movement 207, 226, 252 Zola, Émile 53 The Belly of Paris 168 The Ladies’ Paradise 168

pages: 1,088 words: 228,743

Expected Returns: An Investor's Guide to Harvesting Market Rewards
by Antti Ilmanen
Published 4 Apr 2011

Value strategies worked especially well for stock selection in Japan and for equity country allocation. Other studies document the success of value strategies among emerging equity markets and among corporate bonds. Many fixed income arbitrage strategies employed in hedge funds and bank proprietary trading desks are based on mean-reverting spreads or related value anchors. Statistical arbitrage in equity markets—pairs trading and more complex variants—is also based on relative value (i.e., mean reversion in the pricing relationship between two assets). The profitability of such “arbitrage” (really: relative value trading) strategies waned significantly in the past decade as the technologies to exploit them became widely available.

Instead of holding illiquid or high-liquidity-beta assets, these liquidity providers supply liquidity to the marketplace by trading a short-term reversal strategy. My intuition is that recent laggard stocks may have underperformed because of selling pressure, while recent winners may have benefited from buying pressure. Thus a classic “stat arb” (statistical arbitrage) strategy of buying recent laggards and selling recent outperformers attenuates the temporary supply–demand imbalance and should be rewarded. Technological progress has changed market structures and liquidity sources. For example, the New York Stock Exchange has lost market share in U.S. equity turnover to various electronic platforms and dark pools.

Interestingly, Figure 19.6 suggests that this feature was not strong for Treasuries over the 20-year window (Treasuries became negatively correlated with VIX changes only around 1998), whereas both momentum and value strategies served such a safe haven role (although value worked as a safe haven mainly in the early 2000s, but not in the late 2000s). Statistical arbitrage strategies (pairs trading or exploiting short-term return reversals) may work even better in high-volatility regimes. Figure 19.6. Average monthly returns when the volatility factor is above or below its median, 1990–2009. Sources: Bloomberg, LPX, MSCI Barra, FTSE, Bank of America Merrill Lynch, Hedge Fund Research, Barclays Capital, S&P GSCI, Ken French’s website, Brevan Howard, own calculations.

Risk Management in Trading
by Davis Edwards
Published 10 Jul 2014

Angela Edwards William Fellows Colin Edwards Matt Davis Barbara Sapienza Haseeb Khawaja Dan Gustafson Andrew Coleman Clint Carlin Alexander Abraham John Vickers Varun Chavali Andrew Dunn Kirat Dhillon Ken Parrish Iordanis Karagiannidis Contents Preface ix CHAPTER 1 Trading and Hedge Funds 1 CHAPTER 2 Financial Markets 33 CHAPTER 3 Financial Mathematics 61 CHAPTER 4 Backtesting and Trade Forensics 95 CHAPTER 5 Mark to Market 121 CHAPTER 6 Value-at-Risk 141 CHAPTER 7 Hedging 177 CHAPTER 8 Options, Greeks, and Non-Linear Risks 199 CHAPTER 9 Credit Value Adjustments (CVA) 237 vii viii CONTENTS Afterword 267 Answer Key 269 About the Author 299 Index 301 Preface I started learning about trading strategies and managing trading risk while working on statistical arbitrage trading desks at two investment banks— first at JP Morgan and later Bear Stearns. The core of the job was converting some type of analysis into an action. In other words, I had to use data to make a decision and think through the effects of those decisions. Over time, that most risk management is focused on analysis rather than making decisions.

This result is counter‐intuitive to most risk managers where greater risk will only increase the potential exposures and never decrease them. About the Author DAVIS W. EDWARDS, FRM, ERP, is a senior manager in Deloitte & Touche’s National Securities Pricing Center managing energy derivatives valuation. Prior to joining Deloitte, he was division director of credit risk at Macquarie Bank and senior managing director on the statistical arbitrage trading desk at Bear Stearns. He is a regular speaker on the topic of financial modeling and mathematics applied to real world problems. He is the author of the books Energy Trading and Investingg and Energy Investing Demystified. d Davis is director of the Houston chapter of the Global Association of Risk Professionals. 299 Index A ABS.

pages: 571 words: 105,054

Advances in Financial Machine Learning
by Marcos Lopez de Prado
Published 2 Feb 2018

Expert Systems with Applications, Vol. 38, No. 5, pp. 5311–5319. Kim, K. (2003): “Financial time series forecasting using support vector machines.” Neurocomputing, Vol. 55, No. 1, pp. 307–319. Krauss, C., X. Do, and N. Huck (2017): “Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500.” European Journal of Operational Research, Vol. 259, No. 2, pp. 689–702. Laborda, R. and J. Laborda (2017): “Can tree-structured classifiers add value to the investor?” Finance Research Letters, Vol. 22 (August), pp. 211–226. Nakamura, E. (2005): “Inflation forecasting using a neural network.”

Available at http://ssrn.com/ abstract=2308659. Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2017): “The probability of backtest overfitting.” Journal of Computational Finance, Vol. 20, No. 4, pp. 39–70. Available at http://ssrn.com/abstract=2326253. Bertram, W. (2009): “Analytic solutions for optimal statistical arbitrage trading.” Working paper. Available at http://ssrn.com/abstract=1505073. Easley, D., M. Lopez de Prado, and M. O'Hara (2011): “The exchange of flow-toxicity.” Journal of Trading, Vol. 6, No. 2, pp. 8–13. Available at http://ssrn.com/abstract=1748633. Notes 1 I would like to thank Professor Peter Carr (New York University) for his contributions to this chapter. 2 The strategy may still be the result of backtest overfitting, but at least the trading rule would not have contributed to that problem. 3 The trading rule R could be characterized as a function of the three barriers, instead of the horizontal ones.

pages: 364 words: 101,286

The Misbehavior of Markets: A Fractal View of Financial Turbulence
by Benoit Mandelbrot and Richard L. Hudson
Published 7 Mar 2006

My claim is the global economy is close to a heart attack.” ON PARIS’S broad Boulevard Haussmann, some serious money is at play. Jean-Philippe Bouchaud and some colleagues at Capital Fund Management were running two hedge funds with combined capital of $725 million as of the end of 2003. The funds engage in statistical arbitrage: They use mathematical models and computer horse-power to find what they think is incorrect pricing in the market, or other unstable patterns on which they can bet. The individual bets are small; but it is, for them, a game of large numbers. Many small profits can mount. In 2002, their biggest fund, Ventus, reported a stock-market gain of 28.1 percent, this, in a year when the market overall had fallen by a third.

In 2002, their biggest fund, Ventus, reported a stock-market gain of 28.1 percent, this, in a year when the market overall had fallen by a third. But it is also a game of chance: In 2003, they were less lucky with gains of just 3.32 percent. Their other fund, Discus, in the futures market, reported a 14.1 percent profit that year. “With statistical arbitrage, there are ups and downs,” Bouchaud says with a shrug. Their strategy is part multifractal, part many other things. They have devised some algorithms of their own, mostly secret, to identify potentially profitable situations in the market. Their models calculate what Bouchaud calls a “center of gravity” for individual stocks and the market overall; if a price rises or falls too far, they interpret it as a trading signal.

pages: 733 words: 179,391

Adaptive Markets: Financial Evolution at the Speed of Thought
by Andrew W. Lo
Published 3 Apr 2017

They began their conversations in almost exactly the same way: “Have you heard of anything unusual going on with other hedge funds … ?” After the third call, I realized that something significant was occurring on Wall Street, something that was off the radar of academic theory or hedge fund practice. I knew all three alumni were working at hedge funds engaged in the same broad category of strategies known as “statistical arbitrage,” or “statarb” for short—highly sophisticated quantitative algorithms and computerized trading platforms involving long and short positions in hundreds of stocks. These were the same kinds of strategies used by Morgan Stanley and D. E. Shaw in the 1980s (see chapter 7). This seemed like too much of a coincidence.

This is a more sophisticated version of chapter 7’s hedge fund example of buying Apricot Computers and simultaneously selling BlueBerry Devices, which is known as a “pairs strategy” (apologies for the pun). Since having been introduced at Morgan Stanley in the early 1980s, pairs strategies have radiated into hundreds of different varieties of statistical arbitrage, the strategies growing more elaborate and refined with each iteration, like the radiation of new species that populate unoccupied ecological niches. The motivation for these strategies is often mean reversion—the idea that what goes up must eventually come down, and vice versa. If stock prices revert to the mean, then past “losers” should appreciate and past “winners” should depreciate.

., 100 Sobel, Russell, 206 social Darwinism, 215 social exclusion, 85–86 social media, 55, 270, 405 Société Générale, 60–61 Society of Mind, The (Minsky), 132–133 sociobiology, 170–174, 216–217 Sociobiology (Wilson), 170–171 Solow, Herbert, 395 Soros, George, 6, 219, 222–223, 224, 227, 234, 244, 277 sovereign wealth funds, 230, 299, 409–410 Soviet Union, 411 Space Shuttle Challenger, 12–16, 24, 38 specialization, 217 speech synthesis, 132 Sperry, Roger, 113–114 “spoofing,” 360 Springer, James, 159 SR-52 programmable calculator, 357 stagflation, 37 Standard Portfolio Analysis of Risk (SPAN), 369–370 Stanton, Angela, 338 starfish, 192, 242 Star Trek, 395–397, 411, 414 stationarity, 253–255, 279, 282 statistical arbitrage (“statarb”), 284, 286, 288–291, 292–293, 362 statistical tests, 47 Steenbarger, Brett, 94 Stein, Carolyn, 69 sterilization, 171, 174 Stiglitz, Joseph, 224, 278, 310 Stocks for the Long Run (Siegel), 253 stock splits, 24, 47 Stone, Oliver, 346 Stone Age, 150, 163, 165 stone tools, 150–151, 153 stop-loss orders, 359 Strasberg, Lee, 105 stress, 3, 75, 93, 101, 122, 160–161, 346, 413–415 strong connectedness, 374 Strong Story Hypothesis, 133 Strumpf, Koleman, 39 “stub quotes,” 360 subjective value, 100 sublenticular extended amygdala, 89 subprime mortgages, 290, 292, 293, 297, 321, 327, 376, 377, 410 Sugihara, George, 366 suicide, 160 Sullenberger, Chesley, 381 Summers, Lawrence (Larry), 50, 315–316, 319–320, 379 sunlight, 108 SuperDot (trading system), 236 supply and demand curves, 29, 30, 31–33, 34 Surowiecki, James, 5, 16 survey research, 40 Sussman, Donald, 237–238 swaps, 243, 298, 300 Swedish Twin Registry, 161 systematic bias, 56 systematic risk, 194, 199–203, 204, 205, 250–251, 348, 389 systemic risk, 319; Bank of England’s measurement of, 366–367; government as source of, 361; in hedge fund industry, 291, 317; of large vs. small shocks, 315; managing, 370–371, 376–378, 387; transparency of, 384–385; trust linked to, 344 Takahashi, Hidehiko, 86 Tanner, Carmen, 353 Tanzania, 150 Tartaglia, Nunzio, 236 Tattersall, Ian, 150, 154 Tech Bubble, 40 telegraphy, 356 Tennyson, Alfred, Baron, 144 testosterone, 108, 337–338 Texas hold ’em, 59–60 Texas Instruments, 357, 384 Thackray, John, 234 Thales, 16 Théorie de la Spéculation (Bachelier), 19 theory of mind, 109–111 thermal homeostasis, 367–368, 370 This Time Is Different (Reinhart and Rogoff), 310 Thompson, Robert, 1, 81–82, 83, 103–104 three-body problem, 214 ticker tape machine, 356 tight coupling, 321, 322, 361, 372Tiger Fund, 234 Tinker, Grant, 395 Tobin tax, 245 Tokugawa era, 17 Tooby, John, 173, 174 tool use, 150–151, 153, 162, 165 “toxic assets,” 299 trade execution, 257, 356 trade secrets, 284–285, 384 trading volume, 257, 359 transactions tax, 245 Treynor, Jack, 263 trial and error, 133, 141, 142, 182, 183, 188, 198, 265 Triangle Shirtwaist Fire, 378–379 tribbles, 190–205, 216 Trivers, Robert, 172 trolley dilemma, 339 Trusty, Jessica, 120 Tversky, Amos, 55, 58, 66–67, 68–69, 70–71, 90, 106, 113, 388 TWA Flight 800, 84–85 twins, 159, 161, 348 “two-legged goat effect,” 155 UBS, 61 Ultimatum Game, 336–338 uncertainty, 212, 218; risk vs., 53–55, 415 unemployment, 36–37 unintended consequences, 7, 248, 269, 330, 358, 375 United Kingdom, 222–223, 242, 377 University of Chicago, 22 uptick rule, 233 Urbach-Wiethe disease, 82–83 U.S.

pages: 320 words: 33,385

Market Risk Analysis, Quantitative Methods in Finance
by Carol Alexander
Published 2 Jan 2007

The index tracking regression model has the index return as the dependent variable, and the explanatory variables are the returns on the assets used to track the index. This can be extended to a regression model for enhanced indexation by replacing the dependent variable by the index return plus a fixed outperformance. A further extension is to statistical arbitrage Introduction to Linear Regression 183 strategies which take a long position on an enhanced indexation portfolio and a short position on the index futures. A case study on index tracking of the Dow Jones Industrial Average index is presented in Section II.5.4.7 where we use that fact that the tracking portfolio must be cointegrated with the index if the tracking error is to be stationary.

(independent and identically distributed) variables central limit theorem 121 error process 148 financial modelling 186 GEV distribution 101 regression 148, 157, 175 stable distribution 106 stochastic process 134–5 Implicit function 185 Implied volatility 194, 196, 200–1 Implied volatility surface 200–1 Incremental change 31 Indefinite integral 15 Independent events 74 Independent and identically distributed (i.i.d.) variables central limit theorem 121 error process 148 financial modelling 186 GEV distribution 101 regression 148, 157, 175 stable distribution 106 stochastic process 134–5 284 Index Independent variable 72, 143 random 109–10, 115, 140 Index tracking regression model 182–3 Indicator function 6 Indices, laws 8 Indifference curves 248–9 Inequality constraint, minimum variance portfolio 245–6 Inference 72, 118–29, 141 central limit theorem 120–1 confidence intervals 72, 118–24 critical values 118–20, 122–3, 129 hypothesis tests 124–5 means 125–7 non-parametric tests 127–9 quantiles 118–20 variance 126–7 Inflexion points 14, 35 Information matrix 133, 203 Information ratio 257, 259 Instability, finite difference approximation 209–10 Integrated process, discrete time 134–6 Integration 3, 15–16, 35 Intensity, Poisson distribution 88 Interest rate 34, 171–3 Interest rate sensitivity 34 Interpolation 186, 193–200, 223 cubic spline 197–200 currency option 195–7 linear/bilinear 193–5 polynomial 195–7 Intrinsic value of option 215 Inverse function 6–7, 35 Inverse matrix 41, 43–4, 133 Investment bank 225 Investment 2, 256–7 Investor risk tolerance 230–1, 237 Irrational numbers 7 Isoquants 248 Iteration 186–93, 223 bisection method 187–8 gradient method 191–3 Newton–Raphson method 188–91 Itô’s lemma 138–9, 219 iTraxx Europe credit spread index 172 Jacobian matrix 202 Jarque–Bera normality test Jensen’s alpha 257–8 158 Joint density function 114–15 Joint distribution function 114–15 Joint probability 73 Jumps, Poisson process 139 Kappa indices 263–5 Kernel 106–7 Kolmogorov–Smirnoff test 128 Kuhn–Tucker conditions 30 Kurtosis 81–3, 94–6, 205–6 Lagrange multiplier (LM) test 124, 167 Lagrange multiplier 29–30, 244 Lagrangian function 29–30 Lattice 186, 210–16, 223 Laws of indices 8 Least squares OLS estimation 143–4, 146–50, 153–61, 163, 170–1, 176 problems 201–2 weighted 179 Leptokurtic density 82–3 Levenberg–Marquardt algorithm 202 Lévy distribution 105 Likelihood function 72, 130–31 MLE 72, 130–34, 141, 202–3 optimization 202–3 ratio test 124, 167 Linear function 4–5 Linear interpolation 193–5 Linear portfolios 33, 35 correlation matrix 55–60 covariance matrix 55–61 matrix algebra 55–61 P&L 57–8 returns 25, 56–8 volatility 57–8 Linear regression 143–84 Linear restrictions, hypothesis tests 165–6 Linear transformation 48 Linear utility function 233 LM (Lagrange multiplier) 29–30, 124, 167, 244 Local maxima 14, 28–9 Local minima 14, 28–9 Logarithmic utility function 232 Logarithm, natural 1, 9, 34–5 Log likelihood 131–2 Lognormal distribution 93–4, 213–14, 218–20 Log returns 16, 19–25 Index Long portfolio 3, 17, 238–40 Long-short portfolio 17, 20–1 Low discrepancy sequences 217 Lower triangular square matrix 62, 64 LR (likelihood ratio) test 124, 167 LU decomposition, matrix 63–4 Marginal densities 108–9 Marginal distributions 108–9 Marginal probability 73–4 Marginal utility 229–30 Market behaviour 180–1 Market beta 250 Market equilibrium 252 Market maker 2 Market microstructure 180 Market portfolio 250–1 Market risk premium, CAPM 253 Markets complete 212 regime-specific behaviour 96–7 Markowitz, Harry 226, 238, 266 Markowitz problem 200–1, 226, 244–5 Matrix algebra 37–70 application 38–47 decomposition 61–4, 70 definite matrix 37, 46–7, 54, 58–9, 70 determinant 41–3, 47 eigenvalues/vectors 37–8, 48–54, 59–61, 70 functions of several variables 27–31 general linear model 161–2 hypothesis testing 165–6 invariant 62 inverse 41, 43–4 law 39–40 linear portfolio 55–61 OLS estimation 159–61 PCA 64–70 product 39–40 quadratic form 37, 45–6, 54 regression 159–61, 165–6 simultaneous equation 44–5 singular matrix 40–1 terminology 38–9 Maxima 14, 28–31, 35 Maximum likelihood estimation (MLE) 72, 130–4, 141, 202–3 Mean confidence interval 123 Mean excess loss 104 Mean reverting process 136–7 Mean 78–9, 125–6, 127, 133–4 285 Mean square error 201 Mean–variance analysis 238 Mean–variance criterion, utility theory 234–7 Minima 14, 28–31, 35 Minimum variance portfolio 3, 240–7 Mixture distribution 94–7, 116–17, 203–6 MLE (maximum likelihood estimation) 72, 130–4, 141, 202–3 Modified duration 2 Modified Newton method 192–3 Moments probability distribution 78–83, 140 sample 82–3 Sharpe ratio 260–3 Monotonic function 13–14, 35 Monte Carlo simulation 129, 217–22 correlated simulation 220–2 empirical distribution 217–18 random numbers 217 time series of asset prices 218–20 Multicollinearity 170–3, 184 Multiple restrictions, hypothesis testing 166–7 Multivariate distributions 107–18, 140–1 bivariate 108–9, 116–17 bivariate normal mixture 116–17 continuous 114 correlation 111–14 covariance 110–2 independent random variables 109–10, 114 normal 115–17, 220–2 Student t 117–18 Multivariate linear regression 158–75 BHP Billiton Ltd 162–5, 169–70, 174–5 confidence interval 167–70 general linear model 161–2 hypothesis testing 163–6 matrix notation 159–61 multicollinearity 170–3, 184 multiple regression in Excel 163–4 OLS estimation 159–61 orthogonal regression 173–5 prediction 169–70 simple linear model 159–61 Multivariate Taylor expansion 34 Mutually exclusive events 73 Natural logarithm 9, 34–5 Natural spline 198 Negative definite matrix 46–7, 54 Newey–West standard error 176 286 Index Newton–Raphson iteration 188–91 Newton’s method 192 No arbitrage 2, 179–80, 211–12 Non-linear function 1–2 Non-linear hypothesis 167 Non-linear portfolio 33, 35 Non-parametric test 127–9 Normal confidence interval 119–20 Normal distribution 90–2 Jarque–Bera test 158 log likelihood 131–2 mixtures 94–7, 140–1, 203–6 multivariate 115–16, 220–2 standard 218–19 Normalized eigenvector 51–3 Normalized Student t distribution 99 Normal mixture distribution 94–7, 116–17, 140–1 EM algorithm 203–6 kurtosis 95–6 probabilities of variable 96–7 variance 94–6 Null hypothesis 124 Numerical methods 185–223 binomial lattice 210–6 inter/extrapolation 193–200 iteration 186–93 Objective function 29, 188 Offer price 2 Oil index, Amex 162–3, 169–70, 174 OLS (ordinary least squares) estimation 143–4, 146–50 autocorrelation 176 BHP Billiton Ltd case study 163 heteroscedasticity 176 matrix notation 159–61 multicollinearity 170–1 properties of estimator 155–8 regression in Excel 153–5 Omega statistic 263–5 One-sided confidence interval 119–20 Opportunity set 246–7, 251 Optimization 29–31, 200–6, 223 EM algorithm 203–6 least squares problems 201–2 likelihood methods 202–3 numerical methods 200–5 portfolio allocation 3, 181 Options 1–2 American 1, 215–16 Bermudan 1 call 1, 6 currency 195–7 European 1–2, 195–6, 212–13, 215–16 finite difference approximation 206–10 pay-off 6 plain vanilla 2 put 1 Ordinary least squares (OLS) estimation 143–4, 146–50 autocorrelation 176 BHP Billiton Ltd case study 163 heteroscedasticity 176 matrix notation 159–61 multicollinearity 170–1 properties of estimators 155–8 regression in Excel 153–5 Orthogonal matrix 53–4 Orthogonal regression 173–5 Orthogonal vector 39 Orthonormal matrix 53 Orthonormal vector 53 Out-of-sample testing 183 P&L (profit and loss) 3, 19 backtesting 183 continuous time 19 discrete time 19 financial returns 16, 19 volatility 57–8 Pairs trading 183 Parabola 4 Parameter notation 79–80 Pareto distribution 101, 103–5 Parsimonious regression model 153 Partial derivative 27–8, 35 Partial differential equation 2, 208–10 Pay-off, option 6 PCA (principal component analysis) 38, 64–70 definition 65–6 European equity indices 67–9 multicollinearity 171 representation 66–7 Peaks-over-threshold model 103–4 Percentage returns 16, 19–20, 58 Percentile 83–5, 195 Performance measures, RAPMs 256–65 Period log returns 23–5 Pi 7 Index Piecewise polynomial interpolation 197 Plain vanilla option 2 Points of inflexion 14, 35 Poisson distribution 87–9 Poisson process 88, 139 Polynomial interpolation 195–7 Population mean 123 Portfolio allocation 237–49, 266 diversification 238–40 efficient frontier 246–9, 251 Markowitz problem 244–5 minimum variance portfolio 240–7 optimal allocation 3, 181, 247–9 Portfolio holdings 17–18, 25–6 Portfolio mathematics 225–67 asset pricing theory 250–55 portfolio allocation 237–49, 266 RAPMs 256–67 utility theory 226–37, 266 Portfolios bond portfolio 37 delta-hedged 208 linear 25, 33, 35, 55–61 minimum variance 3, 240–7 non-linear 33, 35 rebalancing 17–18, 26, 248–9 returns 17–18, 20–1, 91–2 risk factors 33 risk free 211–12 stock portfolio 37 Portfolio volatility 3 Portfolio weights 3, 17, 25–6 Positive definite matrices 37, 46–7, 70 correlation matrix 58–9 covariance matrix 58–9 eigenvalues/vectors 54 stationary point 28–9 Posterior probability 74 Post-sample prediction 183 Power series expansion 9 Power utility functions 232–3 Prediction 169–70, 183 Price discovery 180 Prices ask price 2 asset price evolution 87 bid price 2 equity 172 generating time series 218–20 lognormal asset prices 213–14 market microstructure 180 offer price 2 stochastic process 137–9 Pricing arbitrage pricing theory 257 asset pricing theory 179–80, 250–55 European option 212–13 no arbitrage 211–13 Principal cofactors, determinants 41 Principal component analysis (PCA) 38, 64–70 definition 65–6 European equity index 67–9 multicollinearity 171 representation 66–7 Principal minors, determinants 41 Principle of portfolio diversification 240 Prior probability 74 Probability and statistics 71–141 basic concepts 72–85 inference 118–29 laws of probability 73–5 MLE 130–4 multivariate distributions 107–18 stochastic processes 134–9 univariate distribution 85–107 Profit and loss (P&L) 3, 19 backtesting 183 continuous time 19 discrete time 19 financial returns 16, 19 volatility 57–8 Prompt futures 194 Pseudo-random numbers 217 Put option 1, 212–13, 215–16 Quadratic convergence 188–9, 192 Quadratic form 37, 45–6, 54 Quadratic function 4–5, 233 Quantiles 83–5, 118–20, 195 Quartiles 83–5 Quasi-random numbers 217 Random numbers 89, 217 Random variables 71 density/distribution function 75 i.i.d. 101, 106, 121, 135, 148, 157, 175 independent 109–10, 116, 140–1 OLS estimators 155 sampling 79–80 Random walks 134–7 Ranking investments 256 287 288 Index RAPMs (risk adjusted performance measures) 256–67 CAPM 257–8 kappa indices 263–5 omega statistic 263–5 Sharpe ratio 250–1, 252, 257–63, 267 Sortino ratio 263–5 Realization, random variable 75 Realized variance 182 Rebalancing of portfolio 17–18, 26, 248–9 Recombining tree 210 Regime-specific market behaviour 96–7, 117 Regression 143–84 autocorrelation 175–9, 184 financial applications 179–83 heteroscedasticity 175–9, 184 linear 143–84 multivariate linear 158–75 OLS estimator properties 155–8 simple linear model 144–55 Relative frequency 77–8 Relative risk tolerance 231 Representation, PCA 66–7 Residuals 145–6, 157, 175–8 Residual sum of squares (RSS) 146, 148–50, 159–62 Resolution techniques 185–6 Restrictions, hypothesis testing 165–7 Returns 2–3, 16–26 absolute 58 active 92, 256 CAPM 253–4 compounding 22–3 continuous time 16–17 correlated simulations 220 discrete time 16–17, 22–5 equity index 96–7 geometric Brownian motion 21–2 linear portfolio 25, 56–8 log returns 16, 19–25 long-short portfolio 20–1 multivariate normal distribution 115–16 normal probability 91–2 P&L 19 percentage 16, 19–20, 59–61 period log 23–5 portfolio holdings/weights 17–18 risk free 2 sources 25–6 stochastic process 137–9 Ridge estimator, OLS 171 Risk active risk 256 diversifiable risk 181 portfolio 56–7 systematic risk 181, 250, 252 Risk adjusted performance measure (RAPM) 256–67 CAPM 257–8, 266 kappa indices 263–5 omega statistic 263–5 Sharpe ratio 251, 252, 257–63, 267 Sortino ratio 263–5 Risk averse investor 248 Risk aversion coefficients 231–4, 237 Risk factor sensitivities 33 Risk free investment 2 Risk free portfolio 211 Risk free returns 2 Risk loving investors 248–9 Risk neutral valuation 211–12 Risk preference 229–30 Risk reversal 195–7 Risk tolerance 230–1, 237 Robustness 171 Roots 3–9, 187 RSS (residual sum of squares) 146, 148–50, 159–62 S&P 100 index 242–4 S&P 500 index 204–5 Saddle point 14, 28 Sample 76–8, 82–3 Sampling distribution 140 Sampling random variable 79–80 Scalar product 39 Scaling law 106 Scatter plot 112–13, 144–5 SDE (stochastic differential equation) 136 Security market line (SML) 253–4 Self-financing portfolio 18 Sensitivities 1–2, 33–4 Sharpe ratio 257–63, 267 autocorrelation adjusted 259–62 CML 251, 252 generalized 262–3 higher moment adjusted 260–2 making decision 258 stochastic dominance 258–9 Sharpe, William 250 Short portfolio 3, 17 22, 134, Index Short sales 245–7 Short-term hedging 182 Significance level 124 Similarity transform 62 Similar matrices 62 Simple linear regression 144–55 ANOVA and goodness of fit 149–50 error process 148–9 Excel OLS estimation 153–5 hypothesis tests 151–2 matrix notation 159–61 OLS estimation 146–50 reporting estimated model 152–3 Simulation 186, 217–22 Simultaneous equations 44–5 Singular matrix 40–1 Skewness 81–3, 205–6 Smile fitting 196–7 SML (security market line) 253–4 Solver, Excel 186, 190–1, 246 Sortino ratio 263–5 Spectral decomposition 60–1, 70 Spline interpolation 197–200 Square matrix 38, 40–2, 61–4 Square-root-of-time scaling rule 106 Stable distribution 105–6 Standard deviation 80, 121 Standard error 80, 169 central limit theorem 121 mean/variance 133–4 regression 148–9 White’s robust 176 Standard error of the prediction 169 Standardized Student t distribution 99–100 Standard normal distribution 90, 218–19 Standard normal transformation 90 Standard uniform distribution 89 Stationary point 14–15, 28–31, 35 Stationary stochastic process 111–12, 134–6 Stationary time series 64–5 Statistical arbitrage strategy 182–3 Statistical bootstrap 218 Statistics and probability 71–141 basic concepts 72–85 inference 118–29 law of probability 73–5 MLE 130–4 multivariate distribution 107–18 stochastic process 134–9 univariate distribution 85–107 Step length 192 Stochastic differential equation (SDE) 22, 134, 136 Stochastic dominance 227, 258–9 Stochastic process 72, 134–9, 141 asset price/returns 137–9 integrated 134–6 mean reverting 136–7 Poisson process 139 random walks 136–7 stationary 111–12, 134–6 Stock portfolio 37 Straddle 195–6 Strangle 195–7 Strictly monotonic function 13–14, 35 Strict stochastic dominance 258 Structural break 175 Student t distribution 97–100, 140 confidence intervals 122–3 critical values 122–3 equality of means/variances 127 MLE 132 multivariate 117–18 regression 151–3, 165, 167–8 simulation 220–2 Sum of squared residual, OLS 146 Symmetric matrix 38, 47, 52–4, 61 Systematic risk 181, 250, 252 Tail index 102, 104 Taylor expansion 2–3, 31–4, 36 applications 33–4 approximation 31–4, 36 definition 32–3 multivariate 34 risk factor sensitivities 33 Theory of asset pricing 179–80, 250–55 Tic-by-tic data 180 Time series asset prices/returns 137–9, 218–20 lognormal asset prices 218–20 PCA 64–5 Poisson process 88 regression 144 stochastic process 134–9 Tobin’s separation theorem 250 Tolerance levels, iteration 188 Tolerance of risk 230–1, 237 Total derivative 31 Total sum of square (TSS) 149, 159–62 289 290 Index Total variation, PCA 66 Tower law for expectations 79 Traces of matrix 62 Tradable asset 1 Trading, regression model 182–3 Transition probability 211–13 Transitive preferences 226 Transposes of matrix 38 Trees 186, 209–11 Treynor ratio 257, 259 TSS (total sum of squares) 149, 159–62 Two-sided confidence interval 119–21 Unbiased estimation 79, 81, 156–7 Uncertainty 71 Unconstrained optimization 29 Undiversifiable risk 252 Uniform distribution 89 Unit matrix 40–1 Unit vector 46 Univariate distribution 85–107, 140 binomial 85–7, 212–13 exponential 87–9 generalized Pareto 101, 103–5 GEV 101–3 kernel 106–7 lognormal 93–4, 213–14, 218–20 normal 90–7, 115–16, 131–2, 140, 157–8, 203–6, 217–22 normal mixture 94–7, 140, 203–6 Poisson 87–9 sampling 100–1 stable 105–6 Student t 97–100, 122–3, 126, 132–3, 140–1, 151–3, 165–8, 220–2 uniform 89 Upper triangular square matrix 62, 64 Utility theory 226–37, 266 mean–variance criterion 234–7 properties 226–9 risk aversion coefficient 231–4, 237 risk preference 229–30 risk tolerance 230–1, 237 Value at risk (VaR) 104–6, 185, 194 Vanna–volga interpolation method 196 Variance ANOVA 143–4, 149–50, 154, 159–60, 164–5 confidence interval 123–4 forecasting 182 minimum variance portfolio 3, 240–7 mixture distribution 94–6 MLE 133 normal mixture distribution 95–6 portfolio volatility 3 probability distribution 79–81 realized 182 tests on variance 126–7 utility theory 234–7 VaR (value at risk) 104–6, 185, 194 Vector notation, functions of several variables 28 Vectors 28, 37–9, 48–54, 59–61, 70 Venn diagram 74–5 Volatility equity 3, 172–3 implied volatility 194, 196–7, 200–1 interpolation 194, 196–7 linear portfolio 57–8 long-only portfolio 238–40 minimum variance portfolio 240–4 portfolio variance 3 Volpi, Leonardo 70 Vstoxx index 172 Waiting time, Poisson process 88–9 Wald test 124, 167 Weakly stationary process 135 Weak stochastic dominance 258–9 Weibull distribution 103 Weighted least squares 179 Weights, portfolio 3, 17, 25–6 White’s heteroscedasticity test 177–8 White’s robust standard errors 176 Wiener process 22, 136 Yield 1, 197–200 Zero matrix 39 Z test 126

pages: 400 words: 121,988

Trading at the Speed of Light: How Ultrafast Algorithms Are Transforming Financial Markets
by Donald MacKenzie
Published 24 May 2021

Another important category of algorithm is that deployed by statistical arbitrageurs, who seek to profit from patterns of price movements that play out on longer timescales (minutes, hours, days, or even longer) than the near-term movements that are the focus in HFT. Statistical arbitrage first became large-scale in the 1980s, but initially the purchases and sales involved were not fully automated, while nowadays they usually are. A recent book by Greg Zuckerman (2019) vividly portrays one of the most celebrated statistical-arbitrage firms, Renaissance Technologies. 6. As Weisberger (2016) explains, retail brokers’ standard procedure is to send “marketable” orders (those that can be executed immediately) to a wholesaler, while routing to exchanges only the minority of orders that are not marketable.

pages: 431 words: 132,416

No One Would Listen: A True Financial Thriller
by Harry Markopolos
Published 1 Mar 2010

Then I began putting things in, taking things out, testing and retesting and back-testing to see how each package would perform in various market environments. I did this knowing full well that Bernie hadn’t bothered to do any of this. He just sat down and made it up. It’s considerably easier that way—and you always get the results you want! Eventually I developed a product we named the Rampart Options Statistical Arbitrage. It was a product that would do extremely well in a market environment with low to moderately high volatility. As long as the market didn’t move more than 8 to 10 percent over a 10- to 15-day trading period, it would perform very well. Of course, if there was extremely high volatility or if the market did make a substantial move in either direction over that period, it was possible to lose about 50 percent of its value.

But I did what seemed safest at that time. Slightly more than three years had passed since we had discovered Madoff. We had compiled a strong case against him. Our original reason for trying to bring him down—that he was competition we couldn’t compete against—had ended with the failure of the Rampart Options Statistical Arbitrage strategy. But we were so deeply into this thing that it became impossible to put it down. We had actually developed into a pretty good team. We had two investigators in the field, Frank and Mike, and two quants in Neil and me able to find the defects in the materials they collected. And they did continue to add to our growing pile of evidence.

Investment: A History
by Norton Reamer and Jesse Downing
Published 19 Feb 2016

Some are engaged in what has been termed pairs trading, or the purchase of one security that has been deemed “cheap” on a relative basis and the sale of another that seems correspondingly “expensive.” Relative value funds profit when the prices of the pair of securities readjust. Some funds use statistical arbitrage, often examining the behavior of the time series and making judgments as to relative value based on historical valuations. Others are more fundamentally oriented, believing that one well-positioned firm will outperform a competitor. The other common strategy employed by relative value funds is seeking value across the capital structure of a publicly traded firm.

See Standard & Poor’s 500 speculation: art, stamps, coins, and wine, 283; in derivatives, 221; excesses, 197; impacts of, 232; value and, 4–5 spinning jenny, 71 split-strike conversion, 151–52 sponsor, 286–87 Stabilizing an Unstable Economy (Minsky), 214 Stagecoach Corporate Stock Fund, 284–85 Standard & Poor’s 500 (S&P 500), 187, 228, 285, 305–6, 309 Stanford, Allen, 153–56 Stanford, Leland, 155 Stanford Financial Group, 154 Starbucks, 277 State Street Corporation, 299 State Street Global Advisors, 299 State Street Investment Trust, 141 statistical arbitrage, 267 steam engine, 71 steamships, 90 Stefanadis, Chris, 94 sterling, 65 stock company, 134 stock exchanges: national or international, 94; new, 96; regional, 94–95 stock market: dislocations, 205; in England, 86–87; in Paris, 85 stock ownership: age and, 93–94; direct and indirect, 91, 93; gender and, 93–94; regulations prohibiting too much, 123; study of, 96; in United States, 90–94, 97 stock ticker, 89–90; network, 95 stones (horoi), 27, 60 Strong, Benjamin, 200–203, 206, 226 strong-form efficiency, 249 Studebaker-Packard Corporation, 111 sub hasta (public auction), 50 subprime, 39 subprime-mortgage lending, 223 Suetonius, 59 sugar consumption, in England, 75, 77 Sumerian city-states, 15–16 supply curve, 229 Supreme Court, 108 survivorship bias, 252 swap spread, 266 Swensen, David, 296, 328 SWFs.

Day One Trader: A Liffe Story
by John Sussex
Published 16 Aug 2009

Rapid-fire deci- D AY O N E T R A D E R : A L I F F E S T O R Y | 169 sions of the type taken in the pits are made by machines now. Screen traders are finding themselves unable to pull off trades that were possible just three years ago. For example, traders are no longer using calculators in dealing rooms to work out the differential in the price on the bid offer spread of contracts. So-called statistical arbitrage programmes are cleaning these types of transactions up in milliseconds. An unexpected consequence of the emergence of IT specialist traders has been that the trading floor has made a comeback. Only this time it is the racks of computer servers at exchanges and not a crowd of coloured-jacketed dealers that are driving trading volumes.

pages: 244 words: 79,044

Money Mavericks: Confessions of a Hedge Fund Manager
by Lars Kroijer
Published 26 Jul 2010

The general feedback from the guys (there were virtually no women in the crowd) was similar: their jobs were not very structured, there was little hierarchy, skill was enthusiastically acknowledged by superiors and lack of it punished mercilessly. The job was entrepreneurial, in that you were encouraged to pursue what you thought were interesting angles, and if you were good the money was great. It was also clear that the type of work varied quite a bit from fund to fund. While the fixed-income or statistical arbitrage funds could be very mathematical in nature, the work at some of the long or short funds largely resembled that of more traditional stock-picking. Joining the clan I eventually joined a value fund in New York called SC Fundamental. During the interview process, the firm’s founder, Peter Collery, had thoroughly impressed me and I still consider him one of the smartest people I have ever met.

pages: 327 words: 91,351

Traders at Work: How the World's Most Successful Traders Make Their Living in the Markets
by Tim Bourquin and Nicholas Mango
Published 26 Dec 2012

It gave me the opportunity to be a little more patient with my trades, because I was focused on relative value, not on whether KLA-Tencor [KLAC] stock was going to go up today or Novellus Systems stock was going to go down. Instead, I could trade the relative value in between the KLAC–Novellus pair. Those early days of equity statistical arbitrage pairs trading has really defined my career up to this point. Bourquin: What made agricultural pairs trading more attractive to you than just straight equity pairs trading? Hemminger: I enjoy the research process and looking through data, which are skills that I have continued to build upon as my career in the financial markets has developed and I have gained more confidence.

pages: 342 words: 99,390

The greatest trade ever: the behind-the-scenes story of how John Paulson defied Wall Street and made financial history
by Gregory Zuckerman
Published 3 Nov 2009

Being financially successful was at the top of Pellegrini’'s life goals, right up there with having a happy family life. He had failed miserably at both. “"I was forty-five and had zero net worth,”" Pellegrini recalls. “"And from my perspective, I had no prospects.”" Pellegrini’'s bright ideas kept coming, though. He developed a new method to use “"statistical arbitrage”" to trade stocks, though he couldn’'t make much money with it. A stint at Tricadia Capital, a hedge fund founded by Michaelcheck’'s Mariner Investment Group, Inc., gave Pellegrini an education in the world of securitized debt and credit-default swaps (CDS), which the firm was heavily involved in.

pages: 289 words: 95,046

Chaos Kings: How Wall Street Traders Make Billions in the New Age of Crisis
by Scott Patterson
Published 5 Jun 2023

Staffed with Ph.D. mathematicians, electrical engineers, computer programmers, and physicists, it had launched in the early 1990s when a quirky, brilliant mathematician and poker aficionado, Peter Muller, decided to see if a trading strategy he’d worked out on paper might succeed in the real world. It deployed a complex strategy called statistical arbitrage. Arbitrage is an age-old investment technique that looks for discrepancies in identical or nearly identical assets. Jay Gould, the notorious New York banker, used it to make a mint on gold in the 1800s. If gold in New York was cheaper than gold in London, he’d buy in New York and sell in London.

pages: 339 words: 109,331

The Clash of the Cultures
by John C. Bogle
Published 30 Jun 2012

The high demand for the services of HFTs comes not only from “punters”—sheer gamblers who thrive (or hope to thrive) by betting against the bookmakers—but from other diverse sources, as well. These traders may range from longer-term investors who value the liquidity and efficiency of HFTs to hedge fund managers who act with great speed based on perceived stock mispricing that may last only momentarily. This aspect of “price discovery,” namely statistical arbitrage that often relies on complex algorithms, clearly enhances market efficiency, which is definitely a goal of short-term trading, but also benefits investors with a long-term focus. Yes, HFTs add to the efficiency of stock market prices, and have slashed unit trading costs to almost unimaginably low levels.

pages: 380 words: 118,675

The Everything Store: Jeff Bezos and the Age of Amazon
by Brad Stone
Published 14 Oct 2013

Hillis argued that even if Shaw did get rich—which seemed unlikely—he’d never return to computer science. (Shaw did, after he became a billionaire and passed on the day-to-day management of D. E. Shaw to others.) “I was spectacularly wrong on both counts,” Hillis says. Morgan Stanley finally pried Shaw loose from academia in 1986, adding him to a famed group working on statistical arbitrage software for the new wave of automated trading. But Shaw had an urge to set off on his own. He left Morgan Stanley in 1988, and with a $28 million seed investment from investor Donald Sussman, he set up shop over a Communist bookstore in Manhattan’s West Village. By design, D. E. Shaw would be a different kind of Wall Street firm.

pages: 402 words: 110,972

Nerds on Wall Street: Math, Machines and Wired Markets
by David J. Leinweber
Published 31 Dec 2008

Shaw & Company in 1988 with $28 million (it now has current assets exceeding $30 billion).7 What is likely Shaw’s last publication on trading dealt with the mechanics of interfacing Unix systems with the Gr eatest Hits of Computation in Finance 41 current generation of electronic trading systems. He apparently realized that, despite his instincts as a former academic, some things are more valuable unpublished. Subsequent in-house developments made D.E. Shaw a leader (reportedly) in electronic market making, statistical arbitrage, and other fast electronic trading strategies. David Whitcomb, a market microstructure economist at Rutgers University and coauthor of a 1988 book on electronic trading strategies,8 faced the same sort of skepticism selling his ideas to Wall Street. Finding no institutional backing, he joined forces with a computer scientist colleague to found Automated Trading Desk (ATD) in the proverbial garage in Charleston, South Carolina.

pages: 320 words: 87,853

The Black Box Society: The Secret Algorithms That Control Money and Information
by Frank Pasquale
Published 17 Nov 2014

Economic sociologists have also studied Spread Networks. Donald Mackenzie et al., “Drilling Through the Allegheny Mountains: Liquidity, Materiality and High-Frequency Trading” ( Jan., 2012), at http://www.sps.ed .ac.uk /__data /assets/pdf_file/0003/78186/LiquidityResub8.pdf. 131. Ibid. A. D. Wissner- Gross and C. E. Freer, “Relativistic Statistical Arbitrage,” Physical Review E 056104-1 82 (2010): 1– 7. Available at http://www .alexwg.org/publications/PhysRevE _82-056104.pdf. 132. Keller, “Robocops,” 1468. NOTES TO PAGES 131–132 277 133. Ibid. 134. Ibid. 135. See Matt Prewitt, “High-Frequency Trading: Should Regulators Do More?,” Michigan Telecommunications and Technology Law Review 19 (2012): 148 (discussing “spoofi ng” and other deceptive HFT tactics). 136.

pages: 537 words: 144,318

The Invisible Hands: Top Hedge Fund Traders on Bubbles, Crashes, and Real Money
by Steven Drobny
Published 18 Mar 2010

After that I would look at their trading style, the instruments they have traded, and how that fits into what we already have. There are many issues involved with hiring traders, and different characteristics are required for different kinds of trading. A macro trader does not have the same characteristics as a relative value trader, a long/short equity trader, or a statistical arbitrage trader. You need to look at the characteristics that are appropriate for a given strategy. In addition to track record, how do you determine how much capital to allocate to your traders? It depends on the market they are trading—what the level of the market is and if there is an opportunity in that market.

Mastering Private Equity
by Zeisberger, Claudia,Prahl, Michael,White, Bowen , Michael Prahl and Bowen White
Published 15 Jun 2017

As Centre Director, he leads its research and outreach activities and has published on topics including operational value creation, responsible investment, LP portfolio construction and minority investment in family businesses. Bowen has spent his career working in and conducting research on the global alternative asset management industry. In the New York hedge fund industry, he researched topics from statistical arbitrage investment strategies in commodities markets to macroeconomic trends and global hedge fund performance. Having worked for both a proprietary trading firm and a fund of funds, he has seen first-hand the challenges faced by investors and allocators of capital to the hedge fund industry. An INSEAD alumnus, Bowen has also advised on a range of VC and growth equity fundraising opportunities across Southeast Asia.

The Volatility Smile
by Emanuel Derman,Michael B.Miller
Published 6 Sep 2016

With financial securities, too, as in the apartment example, models are used to interpolate or extrapolate from prices you know to values you don’t—in our example, from Battery Park prices to Park Avenue prices. Models are mostly used to value relatively illiquid securities based on the known prices of more liquid securities. This is true both for structural option models and purely statistical arbitrage models. In that sense, and unlike models in physics, models in finance don’t really predict the future. Whereas Newton’s laws tell you where a rocket will go in the future given its initial position and velocity, a financial model tells you how to compare different prices in the present. The BSM model tells you how to go from the current price of a stock and a riskless bond to the current value of an option, which 10 THE VOLATILITY SMILE it views as a mixture of the stock and the bond, by means of a very sophisticated and rational kind of interpolation.

The Outlaw Ocean: Journeys Across the Last Untamed Frontier
by Ian Urbina
Published 19 Aug 2019

Nearly four thousand were sold in Hong Kong: Gooch, “Storm Warning.” The Panama Papers included evidence: Langhans, “Newer Sealand.” Each of Sealand’s two legs: Garfinkel, “Welcome to Sealand. Now Bugger Off.” In 2010, a team of researchers: A. D. Wissner-Gross and C. E. Freer, “Relativistic Statistical Arbitrage,” Physical Review, Nov. 5, 2010. One of the companies that HavenCo: Ryan Lackey, “HavenCo: What Really Happened” (presentation at DEF CON 11, Aug. 3, 2003). Within the video, see 30:15. “Almost all time was spent”: Thomas Stackpole, “The World’s Most Notorious Micronation Has the Secret to Protecting Your Data from the NSA,” Mother Jones, Aug. 21, 2013.

pages: 903 words: 235,753

The Stack: On Software and Sovereignty
by Benjamin H. Bratton
Published 19 Feb 2016

Dombrowski, “Rise of a Cybered Westphalian Age: The Coming Age,” Strategic Studies Quarterly 5, no. 1 (2011): 31–62. 15.  Stuart Elden, “Secure the Volume: Vertical Geopolitics and the Depth of Power,” Political Geography 34 (2013): 35–51. 16.  A. Wissner-Gross and C. Freer, “Relativistic Statistical Arbitrage,” Physical Review E 82, no. 5 (2010). On this topic in relation to geodesign, see also Geoff Manaugh, “Islands and the Speed of Light,” March 2011. http://bldgblog.blogspot.com/2011/03/islands-at-speed-of-light.html. 17.  Here I am departing from Catherine Malabou's use of the term plasticity, and toward the mutable future I refer more directly to the chemical qualities of what we commonly call “plastic.”

pages: 1,164 words: 309,327

Trading and Exchanges: Market Microstructure for Practitioners
by Larry Harris
Published 2 Jan 2003

Pairs traders also pay close attention to how quickly and how efficiently markets respond, on average, to new information about common fundamental factors. Arbitrageurs generally should be reluctant to trade against markets that quickly and efficiently aggregate new information because the prices in such markets tend to accurately reflect fundamental values. 17.3.2.3 Statistical Arbitrage Statistical arbitrageurs use factor models to generalize the pairs trading strategy to many instruments. Factor models are statistical models that represent instrument returns by a weighted sum of common factors plus an instrument-specific factor. The weights, called factor loadings, are unique for each instrument.